Chemometrics and Experimental Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy Absorption Analysis

化学计量学 偏最小二乘回归 校准 集合(抽象数据类型) 数据集 实验设计 计算机科学 主成分分析 多元统计 硝酸 线性回归 生物系统 化学 人工智能 统计 机器学习 数学 生物 无机化学 程序设计语言
作者
Luke R. Sadergaski,Gretchen Toney,Lætitia H. Delmau,Kristian Myhre
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:75 (9): 1155-1167 被引量:23
标识
DOI:10.1177/0003702820987281
摘要

Implementing remote, real-time spectroscopic monitoring of radiochemical processing streams in hot cell environments requires efficiency and simplicity. The success of optical spectroscopy for the quantification of species in chemical systems highly depends on representative training sets and suitable validation sets. Selecting a training set (i.e., calibration standards) to build multivariate regression models is both time- and resource-consuming using standard one-factor-at-a-time approaches. This study describes the use of experimental design to generate spectral training sets and a validation set for the quantification of sodium nitrate (0–1 M) and nitric acid (0.1–10 M) using the near-infrared water band centered at 1440 nm. Partial least squares regression models were built from training sets generated by both D- and I-optimal experimental designs and a one-factor-at-a-time approach. The prediction performance of each model was evaluated by comparing the bias and standard error of prediction for statistical significance. D- and I-optimal designs reduced the number of samples required to build regression models compared with one-factor-at-a-time while also improving performance. Models must be confirmed against a validation sample set when minimizing the number of samples in the training set. The D-optimal design performed the best when considering both performance and efficiency by improving predictive capability and reducing number of samples in the training set by 64% compared with the one-factor-at-a-time approach. The experimental design approach objectively selects calibration and validation spectral data sets based on statistical criterion to optimize performance and minimize resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助激动的慕凝采纳,获得10
1秒前
tkurds完成签到,获得积分10
2秒前
搜集达人应助Youlu采纳,获得10
2秒前
3秒前
专一的荧完成签到,获得积分10
4秒前
4秒前
我是老大应助无限的柚子采纳,获得20
5秒前
缇娜发布了新的文献求助10
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
RONG发布了新的文献求助10
7秒前
聂凯发布了新的文献求助10
8秒前
天天快乐应助jacky采纳,获得20
8秒前
温子晴发布了新的文献求助10
9秒前
科研通AI5应助gllll采纳,获得10
9秒前
今后应助舒物采纳,获得10
9秒前
10秒前
Lojong完成签到,获得积分10
10秒前
山山而川完成签到,获得积分10
11秒前
zzz完成签到 ,获得积分10
12秒前
13秒前
安详怀蕾发布了新的文献求助10
14秒前
14秒前
Liu_Dandan完成签到,获得积分10
14秒前
内向的小凡完成签到,获得积分0
14秒前
16秒前
高兴的幻竹完成签到,获得积分10
19秒前
超级涔完成签到 ,获得积分10
20秒前
xiang发布了新的文献求助10
20秒前
彭于晏应助沉着采纳,获得10
20秒前
23秒前
zhzzhz完成签到,获得积分10
23秒前
传奇3应助scgfren采纳,获得10
24秒前
zzz完成签到 ,获得积分10
25秒前
安详怀蕾完成签到,获得积分20
26秒前
彭于晏应助freshfire采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341693
关于积分的说明 10307203
捐赠科研通 3058271
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762818