Chemometrics and Experimental Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy Absorption Analysis

化学计量学 偏最小二乘回归 校准 集合(抽象数据类型) 数据集 实验设计 计算机科学 主成分分析 多元统计 硝酸 线性回归 生物系统 化学 人工智能 统计 机器学习 数学 生物 无机化学 程序设计语言
作者
Luke R. Sadergaski,Gretchen Toney,Lætitia H. Delmau,Kristian Myhre
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:75 (9): 1155-1167 被引量:23
标识
DOI:10.1177/0003702820987281
摘要

Implementing remote, real-time spectroscopic monitoring of radiochemical processing streams in hot cell environments requires efficiency and simplicity. The success of optical spectroscopy for the quantification of species in chemical systems highly depends on representative training sets and suitable validation sets. Selecting a training set (i.e., calibration standards) to build multivariate regression models is both time- and resource-consuming using standard one-factor-at-a-time approaches. This study describes the use of experimental design to generate spectral training sets and a validation set for the quantification of sodium nitrate (0–1 M) and nitric acid (0.1–10 M) using the near-infrared water band centered at 1440 nm. Partial least squares regression models were built from training sets generated by both D- and I-optimal experimental designs and a one-factor-at-a-time approach. The prediction performance of each model was evaluated by comparing the bias and standard error of prediction for statistical significance. D- and I-optimal designs reduced the number of samples required to build regression models compared with one-factor-at-a-time while also improving performance. Models must be confirmed against a validation sample set when minimizing the number of samples in the training set. The D-optimal design performed the best when considering both performance and efficiency by improving predictive capability and reducing number of samples in the training set by 64% compared with the one-factor-at-a-time approach. The experimental design approach objectively selects calibration and validation spectral data sets based on statistical criterion to optimize performance and minimize resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tutu发布了新的文献求助30
1秒前
1秒前
xxxx发布了新的文献求助10
3秒前
3秒前
懒羊羊完成签到 ,获得积分10
3秒前
GuangqinMa完成签到,获得积分10
5秒前
酷炫海白完成签到,获得积分10
5秒前
思源应助肥仔采纳,获得10
5秒前
FQZ发布了新的文献求助10
6秒前
梦梦完成签到,获得积分10
7秒前
tutu完成签到,获得积分10
8秒前
油麦关注了科研通微信公众号
9秒前
义气莫茗完成签到,获得积分10
9秒前
9秒前
Hello应助我要circulation采纳,获得10
9秒前
科斯基完成签到,获得积分10
10秒前
大个应助Ocean采纳,获得10
11秒前
上官若男应助邱邱采纳,获得10
11秒前
11秒前
慕青应助一夜暴富采纳,获得10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
哈哈哈完成签到,获得积分10
13秒前
干净傲儿发布了新的文献求助10
14秒前
Janice发布了新的文献求助10
16秒前
大模型应助金long123采纳,获得10
16秒前
erdongsir发布了新的文献求助10
16秒前
YANG完成签到,获得积分10
16秒前
17秒前
多久上课发布了新的文献求助10
18秒前
牟洪梅发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
陈颖发布了新的文献求助10
22秒前
小猪发布了新的文献求助10
22秒前
Ocean完成签到,获得积分0
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4495586
求助须知:如何正确求助?哪些是违规求助? 3947559
关于积分的说明 12240229
捐赠科研通 3605260
什么是DOI,文献DOI怎么找? 1983040
邀请新用户注册赠送积分活动 1019661
科研通“疑难数据库(出版商)”最低求助积分说明 912239