Privacy-Preserving Weighted Federated Learning Within the Secret Sharing Framework

差别隐私 信息隐私 安全多方计算 计算机安全 同态加密
作者
Huafei Zhu,Rick Siow Mong Goh,Wee Keong Ng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 198275-198284 被引量:6
标识
DOI:10.1109/access.2020.3034602
摘要

This paper studies privacy-preserving weighted federated learning within the secret sharing framework, where individual private data is split into random shares which are distributed among a set of pre-defined computing servers. The contribution of this paper mainly comprises the following four-fold: • In the first fold, the relationship between federated learning (FL) and multi-party computation (MPC) as well as that of secure federated learning (SFL) and secure multi-party computation (SMPC) is investigated. We show that FL is a subset of MPC from the m-ary functionality point of view. Furthermore, if the underlying FL instance privately computes the defined m-ary functionality in the simulation-based framework, then the simulation-based FL solution is an instance of SMPC. • In the second fold, a new notion which we call weighted federated learning (wFL) is introduced and formalized. Then an oracle-aided SMPC for computing wFL is presented and analysed by decoupling the security of FL from that of MPC. Our decoupling formulation of wFL benefits FL developers selecting their best security practices from the state-of-the-art security tools. • In the third-fold, a concrete implementation of wFL leveraging the random splitting technique in the framework of the 3-party computation is presented and analysed. The security of our implementation is guaranteed by the security composition theorem within the secret share framework. • In the fourth-fold, a complement to MASCOT is introduced and formalized in the framework of SPDZ, where a novel solution to the Beaver triple generator is constructed from the standard El Gamal encryption. Our solution is formalized as a three-party computation and a generation of the Beaver triple requires roughly 5 invocations of the El Gamal encryptions. We are able to show that the proposed implementation is secure against honest-but-curious adversary assuming that the underlying El Gamal encryption is semantically secure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
shuyi发布了新的文献求助10
5秒前
皮皮团完成签到 ,获得积分10
6秒前
cugwzr完成签到,获得积分10
6秒前
Hello应助Ryan采纳,获得10
7秒前
顾瞻完成签到,获得积分10
8秒前
令散内方完成签到,获得积分10
8秒前
加减乘除发布了新的文献求助10
10秒前
842413119完成签到,获得积分10
11秒前
科研通AI5应助顾瞻采纳,获得10
15秒前
18秒前
18秒前
轩辕自中完成签到,获得积分10
21秒前
23秒前
哈哈哈发布了新的文献求助10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
24秒前
阿飘应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
Rage_Wang应助科研通管家采纳,获得50
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
hehehehe完成签到,获得积分10
25秒前
25秒前
碎碎念s完成签到,获得积分10
26秒前
26秒前
27秒前
CipherSage应助幸福的雪枫采纳,获得10
29秒前
29秒前
30秒前
月亮发布了新的文献求助10
31秒前
32秒前
小费发布了新的文献求助50
35秒前
霍师傅发布了新的文献求助10
36秒前
无花果应助小博士328采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339