亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement Learning in Mixed Dynamic Environments

强化学习 计算机科学 运动规划 规划师 人工智能 移动机器人 时间范围 机器人 数学优化 数学
作者
Zuxin Liu,Baiming Chen,Hongyi Zhou,Guru Koushik,Martial Hebert,Ding Zhao
标识
DOI:10.1109/iros45743.2020.9340876
摘要

Multi-agent navigation in dynamic environments is of great industrial value when deploying a large scale fleet of robot to real-world applications. This paper proposes a decentralized partially observable multi-agent path planning with evolutionary reinforcement learning (MAPPER) method to learn an effective local planning policy in mixed dynamic environments. Reinforcement learning-based methods usually suffer performance degradation on long-horizon tasks with goal-conditioned sparse rewards, so we decompose the long-range navigation task into many easier sub-tasks under the guidance of a global planner, which increases agents' performance in large environments. Moreover, most existing multi-agent planning approaches assume either perfect information of the surrounding environment or homogeneity of nearby dynamic agents, which may not hold in practice. Our approach models dynamic obstacles' behavior with an image-based representation and trains a policy in mixed dynamic environments without homogeneity assumption. To ensure multi-agent training stability and performance, we propose an evolutionary training approach that can be easily scaled to large and complex environments. Experiments show that MAPPER is able to achieve higher success rates and more stable performance when exposed to a large number of non-cooperative dynamic obstacles compared with traditional reaction-based planner LRA* and the state-of-the-art learning-based method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助present采纳,获得10
2秒前
jjj发布了新的文献求助10
2秒前
6秒前
长发飘飘发布了新的文献求助10
9秒前
慕青应助jjj采纳,获得30
18秒前
所所应助长发飘飘采纳,获得10
21秒前
斯文败类应助violet兰采纳,获得10
30秒前
40秒前
41秒前
44秒前
49秒前
coco发布了新的文献求助30
50秒前
wns驳回了大模型应助
55秒前
1分钟前
研友_ZG4ml8完成签到 ,获得积分0
1分钟前
科研通AI5应助awww采纳,获得10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
1分钟前
awww发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
wns发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
violet兰完成签到,获得积分20
2分钟前
wns关闭了wns文献求助
2分钟前
violet兰发布了新的文献求助10
2分钟前
3分钟前
NS完成签到,获得积分10
3分钟前
可爱的函函应助penny采纳,获得10
4分钟前
4分钟前
4分钟前
penny发布了新的文献求助10
4分钟前
白菜完成签到 ,获得积分10
4分钟前
科研通AI5应助penny采纳,获得10
4分钟前
Owen应助欣欣采纳,获得10
6分钟前
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333713
关于积分的说明 10263130
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511