Deep learning robotic guidance for autonomous vascular access

自主学习 计算机科学 血管通路 人工智能 医学 心理学 外科 数学教育 血液透析
作者
Alvin I. Chen,Max L. Balter,Timothy J. Maguire,Martin L. Yarmush
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (2): 104-115 被引量:134
标识
DOI:10.1038/s42256-020-0148-7
摘要

Medical robots have demonstrated the ability to manipulate percutaneous instruments into soft tissue anatomy while working beyond the limits of human perception and dexterity. Robotic technologies further offer the promise of autonomy in carrying out critical tasks with minimal supervision when resources are limited. Here, we present a portable robotic device capable of introducing needles and catheters into deformable tissues such as blood vessels to draw blood or deliver fluids autonomously. Robotic cannulation is driven by predictions from a series of deep convolutional neural networks that encode spatiotemporal information from multimodal image sequences to guide real-time servoing. We demonstrate, through imaging and robotic tracking studies in volunteers, the ability of the device to segment, classify, localize and track peripheral vessels in the presence of anatomical variability and motion. We then evaluate robotic performance in phantom and animal models of difficult vascular access and show that the device can improve success rates and procedure times compared to manual cannulations by trained operators, particularly in challenging physiological conditions. These results suggest the potential for autonomous systems to outperform humans on complex visuomotor tasks, and demonstrate a step in the translation of such capabilities into clinical use. Getting safe and fast access to blood vessels is vital to many methods of treatment and diagnosis in medicine. Robot-assisted or even fully autonomous methods can potentially do the task more reliably than humans, especially when veins are hard to detect. In this work, a method is tested that uses deep learning to find blood vessels and track the movement of a patient’s arm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蜜蜂发布了新的文献求助10
刚刚
JamesPei应助Zhen采纳,获得10
刚刚
刚刚
xxxx发布了新的文献求助10
刚刚
1秒前
邓创武完成签到,获得积分20
1秒前
英姑应助大力信封采纳,获得10
1秒前
tyr111发布了新的文献求助10
2秒前
半夏完成签到,获得积分10
3秒前
科研通AI6应助牧云采纳,获得10
3秒前
瘦瘦小土豆完成签到,获得积分10
3秒前
4秒前
Snowy发布了新的文献求助10
4秒前
lll发布了新的文献求助10
4秒前
NexusExplorer应助silstorm采纳,获得10
4秒前
晚枫发布了新的文献求助10
4秒前
4秒前
刘兆亮发布了新的文献求助10
5秒前
候鸟发布了新的文献求助10
5秒前
桐桐完成签到,获得积分10
5秒前
5秒前
载尘发布了新的文献求助10
5秒前
阿芙乐尔完成签到,获得积分10
5秒前
懒羊羊发布了新的文献求助10
5秒前
5秒前
6秒前
彭于晏应助布谷采纳,获得10
6秒前
7秒前
老头子关注了科研通微信公众号
7秒前
7秒前
7秒前
大模型应助浩哥要strong采纳,获得10
8秒前
9秒前
10秒前
CC发布了新的文献求助10
10秒前
10秒前
搞怪绿柳发布了新的文献求助10
10秒前
香蕉觅云应助西蜀小吏采纳,获得10
10秒前
wangxuejiao发布了新的文献求助10
11秒前
fuiee完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654890
求助须知:如何正确求助?哪些是违规求助? 4796024
关于积分的说明 15070892
捐赠科研通 4813441
什么是DOI,文献DOI怎么找? 2575189
邀请新用户注册赠送积分活动 1530594
关于科研通互助平台的介绍 1489212