亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Materials discovery and design using machine learning

材料科学 纳米技术 系统工程 建筑工程 工程类
作者
Yue Liu,Tianlu Zhao,Wangwei Ju,Siqi Shi
出处
期刊:Journal of Materiomics [Elsevier BV]
卷期号:3 (3): 159-177 被引量:1043
标识
DOI:10.1016/j.jmat.2017.08.002
摘要

The screening of novel materials with good performance and the modelling of quantitative structure-activity relationships (QSARs), among other issues, are hot topics in the field of materials science. Traditional experiments and computational modelling often consume tremendous time and resources and are limited by their experimental conditions and theoretical foundations. Thus, it is imperative to develop a new method of accelerating the discovery and design process for novel materials. Recently, materials discovery and design using machine learning have been receiving increasing attention and have achieved great improvements in both time efficiency and prediction accuracy. In this review, we first outline the typical mode of and basic procedures for applying machine learning in materials science, and we classify and compare the main algorithms. Then, the current research status is reviewed with regard to applications of machine learning in material property prediction, in new materials discovery and for other purposes. Finally, we discuss problems related to machine learning in materials science, propose possible solutions, and forecast potential directions of future research. By directly combining computational studies with experiments, we hope to provide insight into the parameters that affect the properties of materials, thereby enabling more efficient and target-oriented research on materials discovery and design. Machine learning provides a new means of screening novel materials with good performance, developing quantitative structure-activity relationships (QSARs) and other models, predicting the properties of materials, discovering new materials and performing other materials-relateds studies. • The typical mode of and basic procedures for applying machine learning in materials science are summarized and discussed. • For various points of application, the machine learning methods used for different purposes are comprehensively reviewed. • Existing problems are discussed, possible solutions are proposed and potential directions of future research are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉德萌多林完成签到,获得积分10
12秒前
13秒前
李文华发布了新的文献求助20
20秒前
两个轮完成签到 ,获得积分10
27秒前
54秒前
汪鸡毛完成签到 ,获得积分10
59秒前
rachel发布了新的文献求助10
1分钟前
CodeCraft应助敏感的从露采纳,获得10
1分钟前
华仔应助大气的夏云采纳,获得20
1分钟前
1分钟前
李文华完成签到,获得积分20
1分钟前
活泼绝山应助李文华采纳,获得60
1分钟前
孤独的大灰狼完成签到 ,获得积分10
2分钟前
2分钟前
John完成签到,获得积分10
2分钟前
王冠军发布了新的文献求助10
2分钟前
彭于晏应助大司马采纳,获得10
2分钟前
2分钟前
王冠军完成签到,获得积分10
2分钟前
handsomeboy发布了新的文献求助100
2分钟前
handsomeboy完成签到,获得积分10
2分钟前
一二一发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大司马发布了新的文献求助10
3分钟前
成就的向松完成签到 ,获得积分10
3分钟前
3分钟前
大司马完成签到,获得积分10
3分钟前
敏感的从露关注了科研通微信公众号
3分钟前
3分钟前
我是老大应助Geralt采纳,获得10
3分钟前
3分钟前
不懈奋进应助herococa采纳,获得30
3分钟前
3分钟前
Cassidy发布了新的文献求助10
3分钟前
Cassidy完成签到,获得积分10
3分钟前
3分钟前
Chloe发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Learning to Listen, Listening to Learn: Music Perception and the Psychology of Enculturation 700
Structural Equation Modeling of Multiple Rater Data 700
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3894932
求助须知:如何正确求助?哪些是违规求助? 3438683
关于积分的说明 10808104
捐赠科研通 3163628
什么是DOI,文献DOI怎么找? 1747668
邀请新用户注册赠送积分活动 844085
科研通“疑难数据库(出版商)”最低求助积分说明 787809