亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Materials discovery and design using machine learning

材料科学 纳米技术 系统工程 建筑工程 工程类
作者
Yue Liu,Tianlu Zhao,Wangwei Ju,Siqi Shi
出处
期刊:Journal of Materiomics [Elsevier]
卷期号:3 (3): 159-177 被引量:1115
标识
DOI:10.1016/j.jmat.2017.08.002
摘要

The screening of novel materials with good performance and the modelling of quantitative structure-activity relationships (QSARs), among other issues, are hot topics in the field of materials science. Traditional experiments and computational modelling often consume tremendous time and resources and are limited by their experimental conditions and theoretical foundations. Thus, it is imperative to develop a new method of accelerating the discovery and design process for novel materials. Recently, materials discovery and design using machine learning have been receiving increasing attention and have achieved great improvements in both time efficiency and prediction accuracy. In this review, we first outline the typical mode of and basic procedures for applying machine learning in materials science, and we classify and compare the main algorithms. Then, the current research status is reviewed with regard to applications of machine learning in material property prediction, in new materials discovery and for other purposes. Finally, we discuss problems related to machine learning in materials science, propose possible solutions, and forecast potential directions of future research. By directly combining computational studies with experiments, we hope to provide insight into the parameters that affect the properties of materials, thereby enabling more efficient and target-oriented research on materials discovery and design. Machine learning provides a new means of screening novel materials with good performance, developing quantitative structure-activity relationships (QSARs) and other models, predicting the properties of materials, discovering new materials and performing other materials-relateds studies. • The typical mode of and basic procedures for applying machine learning in materials science are summarized and discussed. • For various points of application, the machine learning methods used for different purposes are comprehensively reviewed. • Existing problems are discussed, possible solutions are proposed and potential directions of future research are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
13秒前
15秒前
大模型应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
玉潇发布了新的文献求助10
39秒前
44秒前
46秒前
朴素千亦完成签到 ,获得积分10
47秒前
WhiteT发布了新的文献求助10
50秒前
虚拟的元风完成签到 ,获得积分10
54秒前
小马甲应助yunshui采纳,获得10
59秒前
林子鸿完成签到 ,获得积分10
1分钟前
昭荃完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
Jasper应助焰火在采纳,获得10
1分钟前
yunshui发布了新的文献求助10
1分钟前
充电宝应助yzzzz采纳,获得10
1分钟前
winnie完成签到,获得积分10
1分钟前
1分钟前
mark707完成签到,获得积分10
1分钟前
默默善愁发布了新的文献求助10
1分钟前
1分钟前
yzzzz发布了新的文献求助10
1分钟前
yzzzz完成签到,获得积分10
1分钟前
1分钟前
maher完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
movoandy应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
阿俊完成签到 ,获得积分10
2分钟前
哈基米的吉米哈完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418269
求助须知:如何正确求助?哪些是违规求助? 4534001
关于积分的说明 14142950
捐赠科研通 4450267
什么是DOI,文献DOI怎么找? 2441139
邀请新用户注册赠送积分活动 1432887
关于科研通互助平台的介绍 1410210