梯度升压
随机森林
机器学习
规范化(社会学)
人工智能
计算机科学
Boosting(机器学习)
支持向量机
马修斯相关系数
相关性
深度学习
皮尔逊积矩相关系数
数学
统计
社会学
人类学
几何学
作者
Kristina Preuer,Richard P. Lewis,Sepp Hochreiter,Andreas Bender,Krishna C. Bulusu,Günter Klambauer
出处
期刊:Bioinformatics
[Oxford University Press]
日期:2017-12-14
卷期号:34 (9): 1538-1546
被引量:474
标识
DOI:10.1093/bioinformatics/btx806
摘要
While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies.DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations.DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy.klambauer@bioinf.jku.at.Supplementary data are available at Bioinformatics online.
科研通智能强力驱动
Strongly Powered by AbleSci AI