DeepSynergy: predicting anti-cancer drug synergy with Deep Learning

梯度升压 随机森林 机器学习 规范化(社会学) 人工智能 计算机科学 Boosting(机器学习) 支持向量机 马修斯相关系数 相关性 深度学习 皮尔逊积矩相关系数 数学 统计 社会学 人类学 几何学
作者
Kristina Preuer,Richard P. Lewis,Sepp Hochreiter,Andreas Bender,Krishna C. Bulusu,Günter Klambauer
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:34 (9): 1538-1546 被引量:474
标识
DOI:10.1093/bioinformatics/btx806
摘要

While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies.DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations.DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy.klambauer@bioinf.jku.at.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuzi完成签到,获得积分10
1秒前
士载发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
3秒前
852应助mysci采纳,获得10
5秒前
科研通AI5应助端庄毛巾采纳,获得10
5秒前
6秒前
AEROU完成签到 ,获得积分10
7秒前
丁言笑完成签到,获得积分20
7秒前
小鹿5460发布了新的文献求助10
8秒前
bbb发布了新的文献求助30
8秒前
bluueboom发布了新的文献求助10
8秒前
9秒前
呼呼呼发布了新的文献求助10
9秒前
9秒前
10秒前
hurrican应助Southluuu采纳,获得10
11秒前
深情安青应助远远采纳,获得10
11秒前
11秒前
日富一日发布了新的文献求助10
12秒前
12秒前
今后应助猪猪hero采纳,获得10
12秒前
12秒前
文静的如娆完成签到,获得积分10
13秒前
13秒前
乐乐应助玛卡巴卡马卡采纳,获得30
13秒前
柴胡完成签到,获得积分10
14秒前
汤圆发布了新的文献求助10
14秒前
mignan发布了新的文献求助10
15秒前
SASA发布了新的文献求助10
16秒前
relink完成签到,获得积分10
16秒前
Abby发布了新的文献求助10
16秒前
士载完成签到,获得积分10
17秒前
小白应助朱莉采纳,获得20
17秒前
非凡完成签到,获得积分10
17秒前
叶萧辰发布了新的文献求助10
17秒前
852应助郭团团采纳,获得10
17秒前
18秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805015
求助须知:如何正确求助?哪些是违规求助? 3350144
关于积分的说明 10347372
捐赠科研通 3065969
什么是DOI,文献DOI怎么找? 1683448
邀请新用户注册赠送积分活动 808961
科研通“疑难数据库(出版商)”最低求助积分说明 765153