Drone classification using RF signal based spectral features

Mel倒谱 计算机科学 人工智能 支持向量机 模式识别(心理学) 特征提取 分类器(UML) 过滤器组 语音识别 无人机 滤波器(信号处理) 班级(哲学) 特征向量 特征(语言学) 计算机视觉 生物 哲学 遗传学 语言学
作者
Rabiye Kılıç,Nida Kumbasar,Emin Argun Oral,İbrahim Yücel Özbek
出处
期刊:Engineering Science and Technology, an International Journal [Elsevier]
卷期号:28: 101028-101028 被引量:49
标识
DOI:10.1016/j.jestch.2021.06.008
摘要

Drone detection and classification, important in military and civilian applications, are performed using different sensor signals. Proposed study handles this task using Radio Frequency (RF) signals utilizing basic machine learning methods. It is composed of two main stages as feature extraction succeeded by training/testing of the model. In feature extraction stage, valuable information for classification, contained in the RF signal, is obtained. For this purpose, spectral features, frequently used in speech processing applications, are employed. Specifically, Power Spectral Density (PSD), Mel-Frequency Cepstral Coefficients (MFCC) and Linear Frequency Cepstral Coefficients (LFCC) are adopted by adjusting filter bank margins and parameters for this task. In the second stage, a Support Vector Machine (SVM) classifier is first trained based on the obtained features and finally tested to measure its performance. All experimental studies are carried out using publicly available DroneRF dataset. This dataset contains 2-Class, 4-Class and 10-Class samples for drone existence vs. background (BG), drone types and drone operation modes, respectively. The best classification results are obtained using, PSD, MFCC and LFCC based features for 2-Class, MFCC and LFCC based features for 4-Class and LFCC based features for 10-Class. Accuracy rates for 2-Class, 4-Class and 10-Class are 100%, 98.67% and 95.15%, respectively. These results show that the proposed method outperforms the results given in the literature for DroneRF dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小盒儿发布了新的文献求助10
1秒前
yujia发布了新的文献求助10
1秒前
1秒前
1秒前
al完成签到 ,获得积分0
1秒前
hujuan完成签到 ,获得积分10
1秒前
夏儿完成签到,获得积分10
1秒前
Jasper应助M先生采纳,获得10
1秒前
Songyuxuan完成签到,获得积分10
2秒前
2秒前
2秒前
啊啊啊哦哦哦完成签到,获得积分10
3秒前
CipherSage应助达达利亚采纳,获得10
3秒前
WQ完成签到,获得积分10
3秒前
3秒前
羊羊发布了新的文献求助10
3秒前
共享精神应助俭朴依白采纳,获得10
3秒前
伶俐雅柏完成签到,获得积分10
3秒前
小熊发布了新的文献求助20
4秒前
4秒前
小宋发布了新的文献求助10
4秒前
烟雨夕阳发布了新的文献求助10
4秒前
柚子完成签到,获得积分10
4秒前
5秒前
明明完成签到,获得积分10
5秒前
奔奔发布了新的文献求助10
5秒前
焰古完成签到 ,获得积分10
5秒前
李健应助橙尘尘采纳,获得10
5秒前
Czd发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
冰糖葫芦娃完成签到,获得积分10
7秒前
小马甲应助岁岁菌采纳,获得10
7秒前
科研通AI6应助唐静采纳,获得30
7秒前
科目三应助onyourleft采纳,获得10
8秒前
cc完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644