NIMG-36. VISUALIZATION OF TUMOR HETEROGENEITY AND PREDICTION OF ISOCITRATE DEHYDROGENASE MUTATION STATUS FOR HUMAN GLIOMAS BY USING MULTIPARAMETRIC PHYSIOLOGIC AND METABOLIC MRI

异柠檬酸脱氢酶 胶质瘤 聚类分析 体素 磁共振成像 接收机工作特性 核医学 病理 人工智能 医学 计算机科学 核磁共振 内科学 物理 癌症研究 放射科
作者
Akifumi Hagiwara,Hiroyuki Tatekawa,Jingwen Yao,Catalina Raymond,Richard G. Everson,Kunal Patel,Sergey Mareninov,William H. Yong,Noriko Salamon,Whitney B. Pope,Phioanh L. Nghiemphu,Linda M. Liau,Timothy F. Cloughesy,Benjamin M. Ellingson
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:23 (Supplement_6): vi136-vi137
标识
DOI:10.1093/neuonc/noab196.536
摘要

Abstract Preoperative prediction of isocitrate dehydrogenase mutation status is clinically meaningful, but remains challenging. This study aimed to predict the isocitrate dehydrogenase (IDH) status of gliomas by using the machine learning voxel-wise clustering method of multiparametric physiologic and metabolic magnetic resonance imaging (MRI) and to show the association of the created cluster labels with the glucose metabolism status of the tumors. Sixty-nine patients with diffuse glioma were scanned by pH-sensitive MRI, diffusion-weighted imaging, fluid-attenuated inversion recovery, and contrast-enhanced T1-weighted imaging at 3 T. An unsupervised two-level clustering approach, including the generation of a self-organizing map followed by the K-means clustering, was used for voxel-wise feature extraction from the acquired images. The logarithmic ratio of the labels in each class within tumor regions was applied to a support vector machine to differentiate IDH mutation status. Bootstrapping and leave-one-out cross-validation were used to calculate the area under the curve (AUC) of receiver operating characteristic curves, accuracy, sensitivity, and specificity for evaluating performance. Targeted biopsies were performed for 14 patients to explore the relationship between clustered labels and the expression of key glycolytic proteins determined using immunohistochemistry. The highest prediction performance to differentiate IDH status was found for 10-class clustering, with a mean AUC, accuracy, sensitivity, and specificity of 0.94, 0.91, 0.90, and 0.91, respectively. The tissues with labels 7 + 8 + 9 + 10 showed high expression levels of hypoxia-inducible factor 1-alpha, glucose transporter 3, and hexokinase 2, which are typical of IDH wild-type glioma, whereas those with labels 1 showed low expression of these proteins. Our machine learning model successfully predicted the IDH mutation status of gliomas, and the resulting clusters properly reflected the metabolic status of the tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
阿斯披粼完成签到,获得积分10
3秒前
小马甲应助标致语蝶采纳,获得10
3秒前
Jasper应助琪琪乐乐采纳,获得10
4秒前
4秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
suliuyin应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
NattyPoe应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
NattyPoe应助科研通管家采纳,获得10
5秒前
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
suliuyin应助科研通管家采纳,获得10
5秒前
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
suliuyin应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
JamesPei应助lmr采纳,获得10
5秒前
浪子应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
KUIWU发布了新的文献求助10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760897
求助须知:如何正确求助?哪些是违规求助? 5526527
关于积分的说明 15398531
捐赠科研通 4897535
什么是DOI,文献DOI怎么找? 2634236
邀请新用户注册赠送积分活动 1582341
关于科研通互助平台的介绍 1537691