乳糜微粒
脂蛋白脂酶
化学
甘油三酯
生物化学
脂质代谢
泡沫电池
清道夫受体
脂蛋白
细胞生物学
生物
胆固醇
脂肪组织
极低密度脂蛋白
作者
Ainara G. Cabodevilla,Songtao Tang,Sungwoon Lee,Adam E. Mullick,José O. Alemán,M. Mahmood Hussain,William C. Sessa,Nada A. Abumrad,Ira J. Goldberg
摘要
Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.
科研通智能强力驱动
Strongly Powered by AbleSci AI