Deep Learning‐Enabled Identification of Autoimmune Encephalitis on 3D Multi‐Sequence MRI

磁共振成像 医学 接收机工作特性 自身免疫性脑炎 曲线下面积 脑炎 放射科 人工智能 算法 内科学 计算机科学 免疫学 病毒
作者
Yayun Xiang,Chun Zeng,Baiyun Liu,Weixiong Tan,Jiangfen Wu,Xiaofei Hu,Yongliang Han,Qi Luo,Junwei Gong,Junhang Liu,Yongmei Li
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (4): 1082-1092 被引量:10
标识
DOI:10.1002/jmri.27909
摘要

Background Autoimmune encephalitis (AE) is a noninfectious emergency with severe clinical attacks. It is difficult for the earlier diagnosis of acute AE due to the lack of antibody detection resources. Purpose To construct a deep learning (DL) algorithm using multi‐sequence magnetic resonance imaging (MRI) for the identification of acute AE. Study Type Retrospective. Population One hundred and sixty AE patients (90 women; median age 36), 177 herpes simplex virus encephalitis (HSVE) (89 women; median age 39), and 184 healthy controls (HC) (95 women; median age 39) were included. Fifty‐two patients from another site were enrolled for external validation. Field Strength/Sequence 3.0 T; fast spin‐echo (T 1 WI, T 2 WI, fluid attenuated inversion recovery imaging) and spin‐echo echo‐planar diffusion weighted imaging. Assessment Five DL models based on individual or combined four MRI sequences to classify the datasets as AE, HSVE, or HC. Reader experiment was further carried out by radiologists. Statistical Tests The discriminative performance of different models was assessed using the area under the receiver operating characteristic curve (AUC). The optimal threshold cut‐off was identified when sensitivity and specificity were maximized (sensitivity + specificity − 1) in the validation set. Classification performance using confusion matrices was reported to evaluate the diagnostic value of the models and the radiologists' assessments before being assessed by the paired t ‐test ( P < 0.05 was considered significant). Results In the internal test set, the fusion model achieved the significantly greatest diagnostic performance than single‐sequence DL models with AUCs of 0.828, 0.884, and 0.899 for AE, HSVE, and HC, respectively. The model demonstrated a consistently high performance in the external validation set with AUCs of 0.831 (AE), 0.882 (HSVE), and 0.892 (HC). The fusion model also demonstrated significantly higher performance than all radiologists in identifying AE (accuracy between the fuse model vs. average radiologist: 83% vs. 72%). Data Conclusion The proposed DL algorithm derived from multi‐sequence MRI provided desirable identification and classification of acute AE. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dhjic完成签到 ,获得积分10
刚刚
winnie-wyf发布了新的文献求助10
刚刚
fu给fu的求助进行了留言
1秒前
1秒前
平常叫兽完成签到,获得积分10
2秒前
机智的灵萱完成签到,获得积分10
2秒前
中药学在读疯狗完成签到,获得积分20
2秒前
wss123456发布了新的文献求助10
2秒前
深情安青应助米里迷路采纳,获得10
3秒前
启空发布了新的文献求助30
3秒前
6秒前
慕巧荷发布了新的文献求助10
6秒前
xixixixixixi完成签到,获得积分10
7秒前
白给完成签到,获得积分10
7秒前
科研通AI2S应助Pendragon采纳,获得10
7秒前
8秒前
8秒前
9秒前
seven完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
小小怪将军完成签到,获得积分20
11秒前
躲哪个草发布了新的文献求助10
12秒前
钟123发布了新的文献求助10
12秒前
duxh123发布了新的文献求助10
13秒前
重要的平灵完成签到,获得积分10
13秒前
13秒前
李健应助wenxianxia采纳,获得10
14秒前
14秒前
遇上就这样吧应助霜降采纳,获得10
14秒前
14秒前
wss123456完成签到,获得积分10
14秒前
maox1aoxin应助antonx采纳,获得100
15秒前
绿绿绿绿发布了新的文献求助30
15秒前
钮小童发布了新的文献求助10
16秒前
上官若男应助吴邪采纳,获得10
16秒前
16秒前
今后应助夔kk采纳,获得10
17秒前
2zx关闭了2zx文献求助
17秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912367
求助须知:如何正确求助?哪些是违规求助? 3457650
关于积分的说明 10896759
捐赠科研通 3183953
什么是DOI,文献DOI怎么找? 1759937
邀请新用户注册赠送积分活动 851211
科研通“疑难数据库(出版商)”最低求助积分说明 792559