已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning semantic and thematic vocabulary clusters through embedded instruction: effects on very young English learners’ vocabulary acquisition and retention

词汇 背景(考古学) 计算机科学 心理学 词汇发展 词汇学习 语义学(计算机科学) 语言学 自然语言处理 聚类分析 人工智能 生物 哲学 古生物学 程序设计语言
作者
Jennifer McDonald,Barry Lee Reynolds
出处
期刊:Applied linguistics review [De Gruyter]
卷期号:14 (5): 1129-1156 被引量:6
标识
DOI:10.1515/applirev-2020-0102
摘要

Abstract Research has suggested an interference effect for words taught in semantic clusters due to the semantic links connecting the words. Thematic clustering of vocabulary is an alternative method of presenting new words to second language (L2) learners. However, what is known about the effects of semantic and thematic clustering has been uncovered through the recruitment of adult learners, with little research conducted with very young learners. Moreover, language textbooks and curriculums for very young learners continue to structure vocabulary semantically. Embedded instruction using storybook contexts has been suggested as a suitable context-based vocabulary teaching technique although knowledge of its effects is limited. To investigate this claim, a quasi-experimental within-subjects design was used to investigate whether embedded instruction could differentially affect very young L2 learners’ learning of new vocabulary taught in either semantic or thematic clusters ( N = 38) compared to a control ( N = 15). The findings suggest that embedded instruction is beneficial for very young L2 learners’ vocabulary learning regardless of the clustering type. Participants gained and retained over time considerable receptive and productive vocabulary knowledge for both semantic and thematic clustered words, indicating that embedding vocabulary in storybook contexts may reduce the potential for interference between target words in semantic clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iui飞发布了新的文献求助10
刚刚
春老头发布了新的文献求助10
刚刚
zyy发布了新的文献求助10
2秒前
袋鼠关注了科研通微信公众号
2秒前
科研通AI5应助天天采纳,获得10
4秒前
6秒前
大个应助Ryuki采纳,获得10
7秒前
8秒前
春老头完成签到,获得积分20
10秒前
10秒前
CCC给格局太小的求助进行了留言
12秒前
动漫大师发布了新的文献求助10
12秒前
JamesPei应助Ryuki采纳,获得10
13秒前
科研通AI5应助小文殊采纳,获得10
14秒前
siyuan完成签到,获得积分10
14秒前
天天发布了新的文献求助10
15秒前
卓卓发布了新的文献求助20
16秒前
16秒前
zhoumo发布了新的文献求助10
20秒前
22秒前
JamesPei应助火星上友易采纳,获得30
24秒前
科研通AI5应助wxnice采纳,获得10
24秒前
25秒前
zhang完成签到,获得积分10
25秒前
cheese完成签到,获得积分10
26秒前
852应助HHHH采纳,获得10
26秒前
27秒前
阿碧发布了新的文献求助10
27秒前
NexusExplorer应助爱听歌笑寒采纳,获得10
29秒前
30秒前
情怀应助Ryuki采纳,获得10
30秒前
hyd完成签到,获得积分20
31秒前
32秒前
32秒前
爬爬公主发布了新的文献求助30
33秒前
33秒前
多多完成签到,获得积分10
34秒前
34秒前
36秒前
飞宇发布了新的文献求助10
36秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827082
求助须知:如何正确求助?哪些是违规求助? 3369330
关于积分的说明 10455680
捐赠科研通 3088971
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817399
科研通“疑难数据库(出版商)”最低求助积分说明 770217