Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves

内化 纳米颗粒 烟草 纳米生物技术 纳米技术 核糖核酸 生物物理学 生物分子 植物细胞 小干扰RNA 胶体金 细胞生物学 材料科学 化学 生物 细胞 基因 生物化学
作者
Huan Zhang,Natalie S. Goh,Jeffrey W. Wang,Rebecca L. Pinals,Eduardo González‐Grandío,Gözde S. Demirer,Salwan Butrus,Sirine C. Fakra,Antonio Del Rio Flores,Rui Zhai,Bin Zhao,So‐Jung Park,Markita P. Landry
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:17 (2): 197-205 被引量:141
标识
DOI:10.1038/s41565-021-01018-8
摘要

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wjy完成签到,获得积分10
2秒前
yml完成签到 ,获得积分10
2秒前
九零后无心完成签到,获得积分10
3秒前
4秒前
jenningseastera应助山山而川采纳,获得10
5秒前
小兔叽完成签到,获得积分10
6秒前
奋斗的蜗牛应助wjy采纳,获得10
8秒前
daxiooo11发布了新的文献求助10
8秒前
斯文败类应助maofeng采纳,获得10
8秒前
ygr完成签到,获得积分0
12秒前
会科研的胡萝卜完成签到,获得积分10
13秒前
16秒前
学无止境完成签到,获得积分10
17秒前
21秒前
aliu发布了新的文献求助10
22秒前
真的不会完成签到,获得积分10
23秒前
25秒前
27秒前
充电宝应助dengdengdeng采纳,获得10
28秒前
32秒前
Lionnn完成签到 ,获得积分10
33秒前
34秒前
完美麦片完成签到,获得积分10
35秒前
千小千完成签到,获得积分10
38秒前
Feifei133发布了新的文献求助10
40秒前
阿德利企鹅完成签到,获得积分10
43秒前
43秒前
xiaofenzi完成签到 ,获得积分10
44秒前
orixero应助稗子酿的酒采纳,获得10
46秒前
嘿嘿发布了新的文献求助10
49秒前
pluto应助Feifei133采纳,获得10
49秒前
50秒前
JamesPei应助pumpkin采纳,获得10
51秒前
51秒前
51秒前
wanci应助Lang777采纳,获得10
53秒前
乐乐应助北风采纳,获得10
53秒前
AM发布了新的文献求助10
55秒前
Regina发布了新的文献求助10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825