Automated Pain Assessment in Children Using Electrodermal Activity and Video Data Fusion via Machine Learning

面部表情 计算机科学 人工智能 疼痛评估 非语言交际 公制(单位) 特征(语言学) 机器学习 医学 物理医学与康复 心理学 物理疗法 疼痛管理 发展心理学 经济 哲学 语言学 运营管理
作者
Busra T. Susam,Nathan T. Riek,Murat Akçakaya,Xiaojing Xu,Virginia R. de,Hooman Nezamfar,Damaris Díaz,Kenneth D. Craig,Matthew S. Goodwin,Jeannie S. Huang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 422-431 被引量:38
标识
DOI:10.1109/tbme.2021.3096137
摘要

Pain assessment in children continues to challenge clinicians and researchers, as subjective experiences of pain require inference through observable behaviors, both involuntary and deliberate. The presented approach supplements the subjective self-report-based method by fusing electrodermal activity (EDA) recordings with video facial expressions to develop an objective pain assessment metric. Such an approach is specifically important for assessing pain in children who are not capable of providing accurate self-pain reports, requiring nonverbal pain assessment. We demonstrate the performance of our approach using data recorded from children in post-operative recovery following laparoscopic appendectomy. We examined separately and combined the usefulness of EDA and video facial expression data as predictors of children's self-reports of pain following surgery through recovery. Findings indicate that EDA and facial expression data independently provide above chance sensitivities and specificities, but their fusion for classifying clinically significant pain vs. clinically nonsignificant pain achieved substantial improvement, yielding 90.91% accuracy, with 100% sensitivity and 81.82% specificity. The multimodal measures capitalize upon different features of the complex pain response. Thus, this paper presents both evidence for the utility of a weighted maximum likelihood algorithm as a novel feature selection method for EDA and video facial expression data and an accurate and objective automated classification algorithm capable ofdiscriminating clinically significant pain from clinically nonsignificant pain in children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pupu发布了新的文献求助10
刚刚
Lucas应助自然的甜瓜采纳,获得10
刚刚
ls发布了新的文献求助10
1秒前
1秒前
kjkj完成签到,获得积分10
2秒前
看的眼睛都瞎了完成签到,获得积分10
2秒前
大个应助汪汪芊蕙采纳,获得10
2秒前
2秒前
3秒前
何大大发布了新的文献求助10
3秒前
lunky关注了科研通微信公众号
3秒前
JamesPei应助小梦采纳,获得10
3秒前
lkt完成签到,获得积分10
3秒前
4秒前
QQ完成签到,获得积分10
4秒前
5秒前
任性芾完成签到,获得积分10
5秒前
Ava应助刘丽采纳,获得10
5秒前
温赢发布了新的文献求助10
6秒前
6秒前
斯文败类应助Xzj采纳,获得10
6秒前
6秒前
7秒前
shine完成签到 ,获得积分10
7秒前
CipherSage应助何大大采纳,获得10
7秒前
无名之夫完成签到 ,获得积分10
7秒前
8秒前
小马牙牙完成签到,获得积分10
8秒前
跳跃毒娘发布了新的文献求助10
8秒前
繁棠完成签到 ,获得积分10
8秒前
刘太狼发布了新的文献求助30
9秒前
Jing发布了新的文献求助10
9秒前
讨厌的十九岁完成签到,获得积分10
9秒前
zjtttt发布了新的文献求助10
9秒前
大聪明发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Lucas应助憨憨采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647671
求助须知:如何正确求助?哪些是违规求助? 4774049
关于积分的说明 15040794
捐赠科研通 4806561
什么是DOI,文献DOI怎么找? 2570314
邀请新用户注册赠送积分活动 1527131
关于科研通互助平台的介绍 1486211