Integration of 103 Semivolatile Organic Compounds into One Multianalyte Method for Human Serum Analysis: An Innovative Approach within Exposure Assessment

检出限 色谱法 邻苯二甲酸盐 化学 萃取(化学) 相对标准差 气相色谱-质谱法 气相色谱/串联质谱法 人口 基质(化学分析) 串联质谱法 质谱法 环境化学 有机化学 人口学 社会学
作者
Xiu Wang,Kai Huang,Lingshuai Zeng,Zhang Xiu,Danqi Cheng,Ruifang Li,Yikai Zhou,Tao Jing
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:8 (5): 419-424 被引量:37
标识
DOI:10.1021/acs.estlett.1c00285
摘要

Semivolatile organic compounds (SVOCs) are frequently detected in the environment, and humans are exposed to a mixture of chemicals via multiple exposure pathways. However, there are few data on health outcomes caused by the cumulative exposure or toxicological interactions, due to the absence of simultaneous analytical methods. Herein, we present a method for simultaneous determination of 103 SVOCs, including seven phthalate esters, seven polychlorinated biphenyls, 16 polycyclic aromatic hydrocarbons, five polybromodiphenyl ethers, and 68 pesticides, in 0.5 mL of serum. The two-step extraction coupled with gas chromatography-tandem mass spectrometry was described with a single chromatographic run within 36.65 min. Methodological parameters such as recovery rates, matrix effects, and limits of detection were studied and complied with the validation guidelines. The absolute and relative recoveries ranged from 65.45% to 123.83%, and the relative standard deviations were ≤21.43%. The detection limits were <0.41 μg L–1. This method was then successfully applied to the analysis of 99 real serum samples. The developed protocol achieved a limit of quantification at a level of parts per billion for all compounds and presented benefits for the control of confounding factors, cumulative exposure, and risk assessment in population studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙文霞发布了新的文献求助10
刚刚
无花果应助Jane采纳,获得10
1秒前
迷你的颖完成签到,获得积分10
1秒前
Wonder罗完成签到,获得积分10
1秒前
老师一怒之下给我十篇nuture完成签到,获得积分10
2秒前
2秒前
2秒前
TITANIUMJ完成签到,获得积分10
3秒前
4秒前
4秒前
一只眠羊发布了新的文献求助10
4秒前
LINHY应助小费采纳,获得30
4秒前
耶大王发布了新的文献求助10
5秒前
5秒前
文静兔子发布了新的文献求助10
5秒前
dipper完成签到,获得积分10
5秒前
华仔应助务实的听筠采纳,获得10
5秒前
漂亮忆南发布了新的文献求助30
6秒前
6秒前
脑洞疼应助phil采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
小杨发布了新的文献求助10
8秒前
8秒前
爆米花应助Z123采纳,获得10
8秒前
9秒前
9秒前
玄仙发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
苹果文博发布了新的文献求助10
12秒前
小夕完成签到,获得积分20
12秒前
hui发布了新的文献求助10
12秒前
外星猫完成签到,获得积分10
13秒前
小马甲应助tassssadar采纳,获得10
13秒前
pililili发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721558
求助须知:如何正确求助?哪些是违规求助? 5266516
关于积分的说明 15294460
捐赠科研通 4870924
什么是DOI,文献DOI怎么找? 2615682
邀请新用户注册赠送积分活动 1565499
关于科研通互助平台的介绍 1522511