Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study

卵巢癌 医学 放射科 病态的 超声波 回顾性队列研究 癌症 卷积神经网络 人工智能 内科学 病理 计算机科学
作者
Yue Gao,Shaoqing Zeng,Xiaoyan Xu,Huayi Li,Shuzhong Yao,Kun Song,Xiao Li,Lingxi Chen,Junying Tang,Hui Xing,Zhiying Yu,Qinghua Zhang,Shu‐E Zeng,Cunjian Yi,Hongning Xie,Xiaoming Xiong,Guangyao Cai,Zhi Wang,Yuan Wu,Jianhua Chi
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (3): e179-e187 被引量:95
标识
DOI:10.1016/s2589-7500(21)00278-8
摘要

BackgroundUltrasound is a critical non-invasive test for preoperative diagnosis of ovarian cancer. Deep learning is making advances in image-recognition tasks; therefore, we aimed to develop a deep convolutional neural network (DCNN) model that automates evaluation of ultrasound images and to facilitate a more accurate diagnosis of ovarian cancer than existing methods.MethodsIn this retrospective, multicentre, diagnostic study, we collected pelvic ultrasound images from ten hospitals across China between September 2003, and May 2019. We included consecutive adult patients (aged ≥18 years) with adnexal lesions in ultrasonography and healthy controls and excluded duplicated cases and patients without adnexa or pathological diagnosis. For DCNN model development, patients were assigned to the training dataset (34 488 images of 3755 patients with ovarian cancer, 541 442 images of 101 777 controls). For model validation, patients were assigned to the internal validation dataset (3031 images of 266 patients with ovarian cancer, 5385 images of 602 with benign adnexal lesions), external validation datasets 1 (486 images of 67 with ovarian cancer, 933 images of 268 with benign adnexal lesions), and 2 (1253 images of 166 with ovarian cancer, 5257 images of 723 benign adnexal lesions). Using these datasets, we assessed the diagnostic value of DCNN, compared DCNN with 35 radiologists, and explored whether DCNN could augment the diagnostic accuracy of six radiologists. Pathological diagnosis was the reference standard.FindingsFor DCNN to detect ovarian cancer, AUC was 0·911 (95% CI 0·886–0·936) in the internal dataset, 0·870 (95% CI 0·822–0·918) in external validation dataset 1, and 0·831 (95% CI 0·793–0·869) in external validation dataset 2. The DCNN model was more accurate than radiologists at detecting ovarian cancer in the internal dataset (88·8% vs 85·7%) and external validation dataset 1 (86·9% vs 81·1%). Accuracy and sensitivity of diagnosis increased more after DCNN-assisted diagnosis than assessment by radiologists alone (87·6% [85·0–90·2] vs 78·3% [72·1–84·5], p<0·0001; 82·7% [78·5–86·9] vs 70·4% [59·1–81·7], p<0·0001). The average accuracy of DCNN-assisted evaluations for six radiologists reached 0·876 and were significantly augmented when they were DCNN-assisted (p<0·05).InterpretationThe performance of DCNN-enabled ultrasound exceeded the average diagnostic level of radiologists matched the level of expert ultrasound image readers, and augmented radiologists’ accuracy. However, these observations warrant further investigations in prospective studies or randomised clinical trials.FundingNational Key Basic Research Program of China, National Sci-Tech Support Projects, and National Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米团子完成签到,获得积分10
刚刚
小虾米完成签到,获得积分10
1秒前
831143完成签到 ,获得积分0
2秒前
clock完成签到 ,获得积分10
3秒前
喜悦蚂蚁完成签到,获得积分10
3秒前
livra1058完成签到,获得积分10
5秒前
灵巧的碧蓉完成签到 ,获得积分10
5秒前
羞涩的晓丝完成签到,获得积分10
5秒前
俏皮的荔枝完成签到,获得积分10
6秒前
maomao1986完成签到,获得积分10
6秒前
tuzi完成签到,获得积分10
7秒前
俭朴恋风完成签到,获得积分10
8秒前
进击的研狗完成签到 ,获得积分10
8秒前
Zoe发布了新的文献求助10
9秒前
安安完成签到 ,获得积分10
9秒前
maomao完成签到,获得积分10
10秒前
韩寒完成签到 ,获得积分10
10秒前
liyan完成签到 ,获得积分10
11秒前
热情的夏发布了新的文献求助10
12秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
13秒前
Angie完成签到,获得积分10
14秒前
占那个完成签到 ,获得积分10
14秒前
共享精神应助wxx采纳,获得10
15秒前
luluyang完成签到 ,获得积分10
15秒前
勤恳涵菡完成签到 ,获得积分20
16秒前
夕照古风发布了新的文献求助10
16秒前
入门的橙橙完成签到 ,获得积分10
16秒前
英俊绿海完成签到 ,获得积分10
17秒前
奥里给医学生完成签到,获得积分10
17秒前
18秒前
qls完成签到,获得积分10
18秒前
稗子酿的酒完成签到 ,获得积分10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
花生王子完成签到 ,获得积分10
22秒前
shin0324完成签到,获得积分10
23秒前
细雨听风完成签到,获得积分10
23秒前
王妍完成签到 ,获得积分10
23秒前
Tao发布了新的文献求助10
24秒前
25秒前
大气的雁桃完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330150
关于积分的说明 10244534
捐赠科研通 3045519
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800627
科研通“疑难数据库(出版商)”最低求助积分说明 759577