材料科学
石墨烯
制作
硅橡胶
触觉传感器
复合数
弹性体
灵活性(工程)
复合材料
电子皮肤
纳米技术
硅酮
涂层
光电子学
计算机科学
机器人
医学
人工智能
统计
替代医学
数学
病理
作者
Xiaojie Zhang,Tridib Kumar Sinha,Jin Kuk Kim,Jeong Seok Oh,Jinho Lee
摘要
Abstract Highly sensitive, wearable, and durable tactile sensors are vital for developing smart robots, human–machine interfaces, and health monitoring systems. Although current techniques for developing tactile sensors achieve high performance, they suffer from fabrication complexity, complex working principle, short lifetime, low stretchability, and, in some cases, low sensitivity. Herein, we present a facile, cost‐effective, and scalable method for creating a 3D printed composite film of a tactile sensor made of natural rubber (NR) coated photosensitive elastomer resin (PR)/graphene nanoplatelet composite film. The addition of graphene nanoplatelet (GnP) not only improves the mechanical properties, stretchability, and flexibility of the PR/GnP composite film but also becomes responsible to produce the piezoresponse even under slight mechanical deformation in the flexible film. Furthermore, the proposed NR coating nullifies the possibility of producing interfering triboelectricity during its application as a highly sensitive pressure sensor. It also provides a low‐cost protective layer for the active material as well as the flexibility of the overall device.
科研通智能强力驱动
Strongly Powered by AbleSci AI