Phenomapping-Derived Tool to Individualize the Effect of Canagliflozin on Cardiovascular Risk in Type 2 Diabetes

卡格列净 医学 2型糖尿病 糖尿病 危险系数 内科学 安慰剂 内分泌学 置信区间 病理 替代医学
作者
Evangelos K. Oikonomou,Marc A. Suchard,Darren K. McGuire,Rohan Khera
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:45 (4): 965-974 被引量:22
标识
DOI:10.2337/dc21-1765
摘要

OBJECTIVE Sodium–glucose cotransporter 2 (SGLT2) inhibitors have well-documented cardioprotective effects but are underused, partly because of high cost. We aimed to develop a machine learning–based decision support tool to individualize the atherosclerotic cardiovascular disease (ASCVD) benefit of canagliflozin in type 2 diabetes. RESEARCH DESIGN AND METHODS We constructed a topological representation of the Canagliflozin Cardiovascular Assessment Study (CANVAS) using 75 baseline variables collected from 4,327 patients with type 2 diabetes randomly assigned 1:1:1 to one of two canagliflozin doses (n = 2,886) or placebo (n = 1,441). Within each patient’s 5% neighborhood, we calculated age- and sex-adjusted risk estimates for major adverse cardiovascular events (MACEs). An extreme gradient boosting algorithm was trained to predict the personalized ASCVD effect of canagliflozin using features most predictive of topological benefit. For validation, this algorithm was applied to the CANVAS-Renal (CANVAS-R) trial, comprising 5,808 patients with type 2 diabetes randomly assigned 1:1 to canagliflozin or placebo. RESULTS In CANVAS (mean age 60.9 ± 8.1 years; 33.9% women), 1,605 (37.1%) patients had a neighborhood hazard ratio (HR) more protective than the effect estimate of 0.86 reported for MACEs in the original trial. A 15-variable tool, INSIGHT, trained to predict the personalized ASCVD effects of canagliflozin in CANVAS, was tested in CANVAS-R (mean age 62.4 ± 8.4 years; 2,164 [37.3%] women), where it identified patient phenotypes with greater ASCVD canagliflozin effects (adjusted HR 0.60 [95% CI 0.41–0.89] vs. 0.99 [95% CI 0.76–1.29]; Pinteraction = 0.04). CONCLUSIONS We present an evidence-based, machine learning–guided algorithm to personalize the prescription of SGLT2 inhibitors for patients with type 2 diabetes for ASCVD effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glitter完成签到,获得积分20
刚刚
why发布了新的文献求助10
1秒前
郝晨晰发布了新的文献求助10
1秒前
zmmm发布了新的文献求助10
1秒前
1秒前
pengchen完成签到 ,获得积分10
2秒前
2秒前
4秒前
打打应助认真初之采纳,获得10
4秒前
莫西莫西完成签到,获得积分10
4秒前
共享精神应助Anastasia采纳,获得10
4秒前
4秒前
5秒前
猪猪侠完成签到,获得积分10
5秒前
mingxi发布了新的文献求助10
5秒前
5秒前
酷波er应助dong采纳,获得10
6秒前
6秒前
搜集达人应助Dlan采纳,获得10
6秒前
7秒前
zmmm完成签到,获得积分10
7秒前
自由山槐发布了新的文献求助100
8秒前
cc完成签到 ,获得积分10
8秒前
贺贺发布了新的文献求助10
9秒前
9秒前
活泼菠萝完成签到,获得积分10
9秒前
Chang发布了新的文献求助10
9秒前
mingxi完成签到,获得积分10
12秒前
12秒前
12秒前
dddddd发布了新的文献求助10
13秒前
等待冬亦应助无尘采纳,获得20
14秒前
14秒前
FashionBoy应助里奥采纳,获得10
14秒前
夕夕成玦完成签到,获得积分10
15秒前
yangfan发布了新的文献求助10
15秒前
15秒前
鲤鱼又菡发布了新的文献求助10
16秒前
16秒前
风中凡霜完成签到,获得积分10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274