分割
计算机科学
编码器
变压器
人工智能
编码
编码(集合论)
编码(内存)
建筑
任务(项目管理)
计算机视觉
模式识别(心理学)
电压
工程类
艺术
生物化学
化学
集合(抽象数据类型)
系统工程
电气工程
视觉艺术
基因
程序设计语言
操作系统
作者
Himashi Peiris,Munawar Hayat,Zhaolin Chen,Gary F. Egan,Mehrtash Harandi
出处
期刊:Cornell University - arXiv
日期:2021-11-26
被引量:9
标识
DOI:10.48550/arxiv.2111.13300
摘要
We propose a Transformer architecture for volumetric segmentation, a challenging task that requires keeping a complex balance in encoding local and global spatial cues, and preserving information along all axes of the volume. Encoder of the proposed design benefits from self-attention mechanism to simultaneously encode local and global cues, while the decoder employs a parallel self and cross attention formulation to capture fine details for boundary refinement. Empirically, we show that the proposed design choices result in a computationally efficient model, with competitive and promising results on the Medical Segmentation Decathlon (MSD) brain tumor segmentation (BraTS) Task. We further show that the representations learned by our model are robust against data corruptions. \href{https://github.com/himashi92/VT-UNet}{Our code implementation is publicly available}.
科研通智能强力驱动
Strongly Powered by AbleSci AI