Deep Learning for Individual Heterogeneity: An Automatic Inference Framework

可解释性 计算机科学 推论 机器学习 人工智能 功能(生物学) 多项式分布 自动微分 钥匙(锁) 统计推断 深度学习 经济模型 离散选择 计量经济学 算法 数学 统计 计算机安全 宏观经济学 进化生物学 经济 计算 生物
作者
Max H. Farrell,Tengyuan Liang,Sanjog Misra
出处
期刊:Cornell University - arXiv 被引量:12
标识
DOI:10.48550/arxiv.2010.14694
摘要

We develop methodology for estimation and inference using machine learning to enrich economic models. Our framework takes a standard economic model and recasts the parameters as fully flexible nonparametric functions, to capture the rich heterogeneity based on potentially high dimensional or complex observable characteristics. These "parameter functions" retain the interpretability, economic meaning, and discipline of classical parameters. Deep learning is particularly well-suited to structured modeling of heterogeneity in economics. We show how to design the network architecture to match the structure of the economic model, delivering novel methodology that moves deep learning beyond prediction. We prove convergence rates for the estimated parameter functions. These functions are the key inputs into the finite-dimensional parameter of inferential interest. We obtain inference based on a novel influence function calculation that covers any second-stage parameter and any machine-learning-enriched model that uses a smooth per-observation loss function. No additional derivations are required. The score can be taken directly to data, using automatic differentiation if needed. The researcher need only define the original model and define the parameter of interest. A key insight is that we need not write down the influence function in order to evaluate it on the data. Our framework gives new results for a host of contexts, covering such diverse examples as price elasticities, willingness-to-pay, and surplus measures in binary or multinomial choice models, effects of continuous treatment variables, fractional outcome models, count data, heterogeneous production functions, and more. We apply our methodology to a large scale advertising experiment for short-term loans. We show how economically meaningful estimates and inferences can be made that would be unavailable without our results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng发布了新的文献求助10
刚刚
刚刚
文艺的雨完成签到,获得积分10
1秒前
欢呼尔烟应助如意草丛采纳,获得10
1秒前
15327432191给15327432191的求助进行了留言
1秒前
丹青完成签到,获得积分10
2秒前
2秒前
six完成签到,获得积分10
2秒前
可靠之玉完成签到,获得积分10
3秒前
4秒前
烟花应助Boo采纳,获得10
4秒前
6秒前
深情安青应助廉山芙采纳,获得10
6秒前
ankh发布了新的文献求助10
6秒前
7秒前
六叶草完成签到,获得积分10
7秒前
7秒前
Bgeelyu发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
CodeCraft应助爱吃草莓采纳,获得10
8秒前
饺子发布了新的文献求助20
8秒前
Iwkwy完成签到,获得积分10
8秒前
山城小丸完成签到,获得积分10
8秒前
8秒前
9秒前
feige完成签到 ,获得积分10
9秒前
9秒前
晨曦暮雪完成签到,获得积分10
9秒前
小白完成签到,获得积分10
9秒前
asymmetric糖发布了新的文献求助10
10秒前
Orange应助潇洒的辣条采纳,获得10
11秒前
甄开心完成签到,获得积分10
11秒前
黑色幽默完成签到,获得积分10
11秒前
12秒前
12秒前
......发布了新的文献求助10
12秒前
共享精神应助记录吐吐采纳,获得10
13秒前
Kang发布了新的文献求助20
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621