过电位
催化作用
石墨烯
密度泛函理论
电催化剂
材料科学
甲酸
铜
化学工程
纳米技术
电极
无机化学
化学
电化学
计算化学
有机化学
物理化学
工程类
冶金
作者
Dianchen Du,Haiyan Zhu,Yannv Guo,Xiaolei Hong,Quanshen Zhang,Bingbing Suo,Wenli Zou,Yawei Li
标识
DOI:10.1021/acs.jpcc.2c03551
摘要
Copper dispersed on two-dimensional materials exhibits excellent catalytic performance for the electrochemical reduction reaction of CO2 (CO2RR). Here, Cu clusters were anchored on defective diamond graphene (Cun/ND@GR, n = 3, 4) to form a new class of two-dimensional nano-catalysts. Based on density functional theory, the catalytic performance and selective mechanisms of these configurations were studied systematically. By anchoring the appropriate number and configuration of Cu clusters on the defective graphene, specific reduction products (e.g., CO, CH4, and CH3OH) could be obtained. In particular, the inverted triangle configuration of Cu3/ND@GR electroreduces CO2 to methane with an overpotential of only −0.53 eV. In addition, bonding analysis confirmed the stability of the Cun/ND@GR. The product selectivity was analyzed by calculating the deformation charge density, further revealing the CO2RR mechanism. Furthermore, side reactions (e.g., hydrogen evolution reaction and competitive production of formic acid) do not hinder the CO2RR catalytic activity. This research expands the family of catalysts for the CO2RR and the application scenarios of transition metals loaded on graphene, which provides new insights into the design and preparation of composite nano-catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI