Proportional Hazards Regression in Epidemiologic Follow-up Studies

协变量 混淆 比例危险模型 回归分析 医学 回归 统计 参数统计 比例(比率) 危害 人口学 计量经济学 数学 物理 化学 有机化学 量子力学 社会学
作者
John Cologne,Wan‐Ling Hsu,Robert D. Abbott,Waka Ohishi,Eric J. Grant,Saeko Fujiwara,Harry M. Cullings
出处
期刊:Epidemiology [Lippincott Williams & Wilkins]
卷期号:23 (4): 565-573 被引量:108
标识
DOI:10.1097/ede.0b013e318253e418
摘要

In epidemiologic cohort studies of chronic diseases, such as heart disease or cancer, confounding by age can bias the estimated effects of risk factors under study. With Cox proportional-hazards regression modeling in such studies, it would generally be recommended that chronological age be handled nonparametrically as the primary time scale. However, studies involving baseline measurements of biomarkers or other factors frequently use follow-up time since measurement as the primary time scale, with no explicit justification. The effects of age are adjusted for by modeling age at entry as a parametric covariate. Parametric adjustment raises the question of model adequacy, in that it assumes a known functional relationship between age and disease, whereas using age as the primary time scale does not. We illustrate this graphically and show intuitively why the parametric approach to age adjustment using follow-up time as the primary time scale provides a poor approximation to age-specific incidence. Adequate parametric adjustment for age could require extensive modeling, which is wasteful, given the simplicity of using age as the primary time scale. Furthermore, the underlying hazard with follow-up time based on arbitrary timing of study initiation may have no inherent meaning in terms of risk. Given the potential for biased risk estimates, age should be considered as the preferred time scale for proportional-hazards regression with epidemiologic follow-up data when confounding by age is a concern.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enchanted发布了新的文献求助10
1秒前
CipherSage应助Asofi采纳,获得10
2秒前
szj发布了新的文献求助10
2秒前
2233完成签到 ,获得积分10
2秒前
2秒前
浮游应助调皮的蓝天采纳,获得10
3秒前
蜗牛123完成签到,获得积分10
3秒前
刘MTY完成签到 ,获得积分10
4秒前
5秒前
Xinlei发布了新的文献求助10
9秒前
yuan关注了科研通微信公众号
10秒前
Dr. Chen完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
绝味大姨发布了新的文献求助10
11秒前
共享精神应助远方的大树采纳,获得10
12秒前
13秒前
14秒前
14秒前
小李完成签到,获得积分10
14秒前
luan完成签到,获得积分10
14秒前
褚幻香发布了新的文献求助30
15秒前
15秒前
jiangxxxx1发布了新的文献求助30
15秒前
小王完成签到,获得积分10
16秒前
llwxx完成签到,获得积分10
16秒前
盲盒完成签到,获得积分10
17秒前
沉静凡松发布了新的文献求助10
17秒前
17秒前
我是老大应助lizi采纳,获得20
17秒前
Dr. Chen发布了新的文献求助10
19秒前
哪里有人发布了新的文献求助10
19秒前
hsy发布了新的文献求助10
20秒前
22秒前
JingjingWang发布了新的文献求助10
22秒前
善学以致用应助hsy采纳,获得10
23秒前
Mu完成签到,获得积分10
23秒前
jiangxxxx1完成签到,获得积分20
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196870
求助须知:如何正确求助?哪些是违规求助? 4378399
关于积分的说明 13636182
捐赠科研通 4233982
什么是DOI,文献DOI怎么找? 2322524
邀请新用户注册赠送积分活动 1320667
关于科研通互助平台的介绍 1271135