糖皮质激素受体
DNA甲基化
CpG站点
甲基化
内科学
内分泌学
糖皮质激素
医学
发起人
生物
基因
遗传学
基因表达
作者
Elise Vangeel,Filip Van Den Eede,Titia Hompes,Benedetta Izzi,Jurgen Del‐Favero,Greta Moorkens,Diether Lambrechts,Kathleen Freson,Stephan Claes
标识
DOI:10.1097/psy.0000000000000224
摘要
Objectives Chronic fatigue syndrome (CFS) has been associated with hypothalamic-pituitary-adrenal axis hypofunction and enhanced glucocorticoid receptor (GR) sensitivity. In addition, childhood trauma is considered a major risk factor for the syndrome. This study examines DNA methylation of the GR gene (NR3C1) in CFS and associations with childhood sexual and physical trauma. Methods Quantification of DNA methylation within the 1F promoter region of NR3C1 was performed in 76 female patients (46 with no/mild and 30 with moderate/severe childhood trauma) and 19 healthy controls by using Sequenom EpiTYPER. Further, we examined the association of NR3C1-1F promoter methylation with the outcomes of the low-dose (0.5 mg) dexamethasone/corticotropin-releasing factor test in a subset of the study population. Mann-Whitney U tests and Spearman correlations were used for statistical analyses. Results Overall NR3C1-1F DNA methylation was lower in patients with CFS than in controls. After cytosine guanine dinucleotide (CpG)-specific analysis, CpG_1.5 remained significant after Bonferroni correction (adjusted p = .0014). Within the CFS group, overall methylation (ρ = 0.477, p = .016) and selective CpG units (CpG_1.5: ρ = 0.538, p = .007; CpG_12.13: ρ = 0.448, p = .025) were positively correlated with salivary cortisol after dexamethasone administration. There was no significant difference in NR3C1-1F methylation between traumatized and nontraumatized patients. Conclusions We found evidence of NR3C1 promoter hypomethylation in female patients with CFS and the functional relevance of these differences was consistent with the hypothalamic-pituitary-adrenalaxis hypofunction hypothesis (GR hypersuppression). However, we found no evidence of an additional effect of childhood trauma on CFS via alterations in NR3C1 methylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI