Improving breast cancer diagnostics with deep learning for MRI

医学 概化理论 接收机工作特性 乳腺癌 乳房磁振造影 人口统计学的 癌症 磁共振成像 放射科 深度学习 人工智能 乳腺摄影术 内科学 计算机科学 统计 人口学 数学 社会学
作者
Jan Witowski,Laura Heacock,Beatriu Reig,Stella K. Kang,Alana A. Lewin,Kristine Pysarenko,Shalin Patel,Naziya Samreen,Wojciech Rudnicki,Elżbieta Łuczyńska,Tadeusz Popiela,Linda Moy,Krzysztof J. Geras
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:14 (664): eabo4802-eabo4802 被引量:114
标识
DOI:10.1126/scitranslmed.abo4802
摘要

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has a high sensitivity in detecting breast cancer but often leads to unnecessary biopsies and patient workup. We used a deep learning (DL) system to improve the overall accuracy of breast cancer diagnosis and personalize management of patients undergoing DCE-MRI. On the internal test set ( n = 3936 exams), our system achieved an area under the receiver operating characteristic curve (AUROC) of 0.92 (95% CI: 0.92 to 0.93). In a retrospective reader study, there was no statistically significant difference ( P = 0.19) between five board-certified breast radiologists and the DL system (mean ΔAUROC, +0.04 in favor of the DL system). Radiologists’ performance improved when their predictions were averaged with DL’s predictions [mean ΔAUPRC (area under the precision-recall curve), +0.07]. We demonstrated the generalizability of the DL system using multiple datasets from Poland and the United States. An additional reader study on a Polish dataset showed that the DL system was as robust to distribution shift as radiologists. In subgroup analysis, we observed consistent results across different cancer subtypes and patient demographics. Using decision curve analysis, we showed that the DL system can reduce unnecessary biopsies in the range of clinically relevant risk thresholds. This would lead to avoiding biopsies yielding benign results in up to 20% of all patients with BI-RADS category 4 lesions. Last, we performed an error analysis, investigating situations where DL predictions were mostly incorrect. This exploratory work creates a foundation for deployment and prospective analysis of DL-based models for breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张楚懿完成签到,获得积分10
1秒前
zy发布了新的文献求助10
1秒前
1秒前
在水一方应助何必在乎采纳,获得10
5秒前
冰勾板勾完成签到,获得积分10
5秒前
vetXue完成签到,获得积分10
5秒前
5秒前
7秒前
zmz完成签到,获得积分10
7秒前
情怀应助yu采纳,获得10
7秒前
sghsh完成签到,获得积分10
9秒前
9秒前
小鲨鱼完成签到,获得积分10
10秒前
10秒前
欧欧欧导发布了新的文献求助10
11秒前
hhchhcmxhf完成签到,获得积分10
11秒前
跳跃小伙完成签到 ,获得积分10
11秒前
在水一方应助Atlantis采纳,获得10
14秒前
共享精神应助安蓝采纳,获得10
15秒前
15秒前
15秒前
慕容幼丝完成签到,获得积分10
15秒前
高小羊应助科研通管家采纳,获得10
15秒前
shanage应助科研通管家采纳,获得10
15秒前
高小羊应助科研通管家采纳,获得10
15秒前
高小羊应助科研通管家采纳,获得10
16秒前
shanage应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
高小羊应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI6.1应助科研通管家采纳,获得100
16秒前
收皮皮完成签到 ,获得积分10
16秒前
Christian完成签到,获得积分10
17秒前
欢喜的平蓝完成签到,获得积分10
19秒前
Owen应助Troy北辰采纳,获得10
20秒前
刘冰芸完成签到,获得积分10
24秒前
超哥完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5835695
求助须知:如何正确求助?哪些是违规求助? 6106242
关于积分的说明 15592840
捐赠科研通 4954035
什么是DOI,文献DOI怎么找? 2670074
邀请新用户注册赠送积分活动 1615389
关于科研通互助平台的介绍 1570485