Variational Attention-Based Interpretable Transformer Network for Rotary Machine Fault Diagnosis

人工智能 可解释性 计算机科学 推论 深度学习 人工神经网络 变压器 模式识别(心理学) 预处理器 振动 机器学习 工程类 量子力学 电气工程 物理 电压
作者
Yasong Li,Zheng Zhou,Chuang Sun,Xuefeng Chen,Ruqiang Yan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6180-6193 被引量:60
标识
DOI:10.1109/tnnls.2022.3202234
摘要

Deep learning technology provides a promising approach for rotary machine fault diagnosis (RMFD), where vibration signals are commonly utilized as input of a deep network model to reveal the internal state of machinery. However, most existing methods fail to mine association relationships within signals. Unlike deep neural networks, transformer networks are capable of capturing association relationships through the global self-attention mechanism to enhance feature representations from vibration signals. Despite this, transformer networks cannot explicitly establish the causal association between signal patterns and fault types, resulting in poor interpretability. To tackle these problems, an interpretable deep learning model named the variational attention-based transformer network (VATN) is proposed for RMFD. VATN is improved from transformer encoder to mine the association relationships within signals. To embed the prior knowledge of the fault type, which can be recognized based on several key features of vibration signals, a sparse constraint is designed for attention weights. Variational inference is employed to force attention weights to samples from Dirichlet distributions, and Laplace approximation is applied to realize reparameterization. Finally, two experimental studies conducted on bevel gear and bearing datasets demonstrate the effectiveness of VATN to other comparison methods, and the heat map of attention weights illustrates the causal association between fault types and signal patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jaden完成签到,获得积分10
刚刚
1秒前
尚奇完成签到,获得积分10
1秒前
1秒前
1秒前
josh完成签到,获得积分10
1秒前
yalin完成签到,获得积分20
2秒前
Axolotll发布了新的文献求助10
4秒前
4秒前
4秒前
lizishu应助科研通管家采纳,获得10
5秒前
Owen应助无私之槐采纳,获得10
6秒前
su发布了新的文献求助10
8秒前
英俊的铭应助JKL采纳,获得10
9秒前
byyyy完成签到,获得积分10
10秒前
思源应助666采纳,获得10
13秒前
14秒前
彭于晏应助秀秀采纳,获得10
15秒前
riccixuu完成签到 ,获得积分10
15秒前
JamesPei应助shan采纳,获得10
16秒前
zwyingg完成签到 ,获得积分10
17秒前
予秋发布了新的文献求助10
18秒前
YMUSTC完成签到,获得积分10
21秒前
咿呀完成签到,获得积分10
23秒前
25秒前
27秒前
黑粉头头完成签到,获得积分10
30秒前
30秒前
32秒前
笑点低的达完成签到,获得积分10
32秒前
34秒前
RUHUAN发布了新的文献求助10
36秒前
黄科发布了新的文献求助10
37秒前
37秒前
JKL发布了新的文献求助10
38秒前
42秒前
热心市民蚂蚱殿下完成签到,获得积分10
42秒前
Donger完成签到 ,获得积分10
42秒前
黄科完成签到,获得积分20
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
The Practice of Clinical Echocardiography 第 6版本 要完整版本的 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872260
求助须知:如何正确求助?哪些是违规求助? 6486934
关于积分的说明 15668519
捐赠科研通 4989369
什么是DOI,文献DOI怎么找? 2689893
邀请新用户注册赠送积分活动 1632390
关于科研通互助平台的介绍 1590342