Application of Machine Learning Methods for Process Optimization in Electronic Packaging Processes

过程(计算) 计算机科学 电子包装 工艺优化 制造工程 工艺工程 工程类 电子工程 操作系统 环境工程
作者
Corinna Niegisch,Sabine Haag,Tanja Braun,Ole Hülck,Martin Schneider‐Ramelow
标识
DOI:10.23919/empc55870.2023.10418387
摘要

Epoxy resins are commonly used as encapsulation materials in electronic packaging processes. Fluctuations in the materials lead to both changes in processability and to varying quality. Ideally, these variations should be identified, and measures taken as quickly as possible to reduce scrap parts and thus costs. A promising optimization approach for encapsulation processes are machine learning models, which have already shown good results in quality predictions, especially for injection molding. Subsequent quality measurements are avoided with good quality prediction models. With this type of models, not only predictions can be made, but also optimal parameter combinations can be found. In this paper, models for predicting quality criteria warpage and residual enthalpy of the epoxy molding compound were set up, trained and validated. Time series of in-situ sensors were used, from which relevant features were extracted and which, together with machine parameters, provide a dataset for prediction. The most promising prediction models are random forest regression and gradient boosting regression. They predict warpage with an accuracy of 90 % to 91 % and the residual enthalpy with an accuracy of 95 %. Subsequently, optimization models of the machine parameters were set up. All relevant target variables were considered in a cost function, through the minimization of which an optimal parameter set was found. The gradient boosted tree and Bayesian optimization were determined to be the most promising models, as they lead to the lowest values of the respective cost function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
耗尽完成签到,获得积分10
2秒前
纯真硬币发布了新的文献求助10
2秒前
Tibbar完成签到 ,获得积分10
3秒前
Hello应助爹爹采纳,获得10
3秒前
呆萌的太阳完成签到 ,获得积分10
4秒前
xiaowu发布了新的文献求助10
5秒前
跳跃鱼完成签到,获得积分10
7秒前
华仔应助纯真硬币采纳,获得10
7秒前
qxy完成签到 ,获得积分10
8秒前
9秒前
徐徐完成签到,获得积分10
9秒前
不要再忘登陆密码了完成签到,获得积分10
10秒前
香蕉觅云应助于冷松采纳,获得10
11秒前
殷超完成签到,获得积分0
12秒前
13秒前
小小完成签到 ,获得积分10
13秒前
xiaowu完成签到,获得积分10
13秒前
13秒前
爹爹发布了新的文献求助10
14秒前
14秒前
诺奇完成签到,获得积分10
15秒前
蒋不惜完成签到,获得积分10
17秒前
Billie发布了新的文献求助10
18秒前
王文茹发布了新的文献求助10
19秒前
赵文若完成签到,获得积分10
19秒前
20秒前
伶俐碧萱完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
lzy完成签到,获得积分10
23秒前
于冷松发布了新的文献求助10
24秒前
KevenDing完成签到,获得积分10
26秒前
27秒前
lzy发布了新的文献求助10
27秒前
xuan21发布了新的文献求助10
29秒前
llls完成签到 ,获得积分10
29秒前
Lj完成签到,获得积分10
30秒前
杨榆藤完成签到,获得积分10
31秒前
壮观的不评完成签到 ,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864242
求助须知:如何正确求助?哪些是违规求助? 3406509
关于积分的说明 10650293
捐赠科研通 3130523
什么是DOI,文献DOI怎么找? 1726433
邀请新用户注册赠送积分活动 831749
科研通“疑难数据库(出版商)”最低求助积分说明 780004