Prediction of disease severity in COPD: a deep learning approach for anomaly-based quantitative assessment of chest CT

医学 神经组阅片室 慢性阻塞性肺病 放射科 内科学 异常检测 金标准(测试) 心脏病学 人工智能 神经学 精神科 计算机科学
作者
Sílvia D. Almeida,Tobias Norajitra,Carsten T. Lüth,Tassilo Wald,Vivienn Weru,Marco Nolden,Paul F. Jäger,Oyunbileg von Stackelberg,Claus Peter Heußel,Oliver Weinheimer,Jürgen Biederer,Hans‐Ulrich Kauczor,Klaus Maier‐Hein
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (7): 4379-4392 被引量:11
标识
DOI:10.1007/s00330-023-10540-3
摘要

Abstract Objectives To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity. Materials and methods Paired inspiratory/expiratory CT and clinical data from COPDGene and COSYCONET cohort studies were included. COPDGene data served as training/validation/test data sets ( N = 3144/786/1310) and COSYCONET as external test set ( N = 446). To differentiate low-risk (healthy/minimal disease, [GOLD 0]) from COPD patients (GOLD 1–4), the self-supervised DL model learned semantic information from 50 × 50 × 50 voxel samples from segmented intact lungs. An anomaly detection approach was trained to quantify lung abnormalities related to COPD, as regional deviations. Four supervised DL models were run for comparison. The clinical and radiological predictive power of the proposed anomaly score was assessed using linear mixed effects models (LMM). Results The proposed approach achieved an area under the curve of 84.3 ± 0.3 ( p < 0.001) for COPDGene and 76.3 ± 0.6 ( p < 0.001) for COSYCONET, outperforming supervised models even when including only inspiratory CT. Anomaly scores significantly improved fitting of LMM for predicting lung function, health status, and quantitative CT features (emphysema/air trapping; p < 0.001). Higher anomaly scores were significantly associated with exacerbations for both cohorts ( p < 0.001) and greater dyspnea scores for COPDGene ( p < 0.001). Conclusion Quantifying heterogeneous COPD manifestations as anomaly offers advantages over supervised methods and was found to be predictive for lung function impairment and morphology deterioration. Clinical relevance statement Using deep learning, lung manifestations of COPD can be identified as deviations from normal-appearing chest CT and attributed an anomaly score which is consistent with decreased pulmonary function, emphysema, and air trapping. Key Points • A self-supervised DL anomaly detection method discriminated low-risk individuals and COPD subjects, outperforming classic DL methods on two datasets (COPDGene AUC = 84.3%, COSYCONET AUC = 76.3%). • Our contrastive task exhibits robust performance even without the inclusion of expiratory images, while voxel-based methods demonstrate significant performance enhancement when incorporating expiratory images, in the COPDGene dataset. • Anomaly scores improved the fitting of linear mixed effects models in predicting clinical parameters and imaging alterations (p < 0.001) and were directly associated with clinical outcomes (p < 0.001).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助蚂蚱别跳采纳,获得10
刚刚
SC30发布了新的文献求助10
刚刚
星辰大海应助贪玩飞薇采纳,获得10
刚刚
娜娜发布了新的文献求助10
刚刚
戚金凤发布了新的文献求助10
刚刚
称心的西牛关注了科研通微信公众号
1秒前
2秒前
bkagyin应助weijie采纳,获得10
2秒前
2秒前
3秒前
3秒前
文艺的星月完成签到 ,获得积分10
3秒前
酆冷安完成签到,获得积分10
3秒前
3秒前
wuyy发布了新的文献求助10
3秒前
3秒前
yeruian发布了新的文献求助10
3秒前
悦耳乐萱完成签到,获得积分10
4秒前
haixing0530发布了新的文献求助10
4秒前
4秒前
mingshi发布了新的文献求助10
4秒前
ypppp完成签到,获得积分10
4秒前
大模型应助激动的新筠采纳,获得10
4秒前
4秒前
小马甲应助一颗77采纳,获得10
4秒前
学术圈边缘派遣员完成签到,获得积分10
5秒前
CipherSage应助蹦蹦采纳,获得10
5秒前
huanir99完成签到,获得积分10
5秒前
善学以致用应助xx泡菜鱼采纳,获得10
6秒前
6秒前
浮游应助OvO_4577采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
杜宇翔完成签到,获得积分10
7秒前
忧郁的白竹完成签到,获得积分10
7秒前
juqiu完成签到,获得积分10
7秒前
嘛籽m发布了新的文献求助10
7秒前
ypppp发布了新的文献求助10
7秒前
推推完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506326
求助须知:如何正确求助?哪些是违规求助? 4601891
关于积分的说明 14478915
捐赠科研通 4535908
什么是DOI,文献DOI怎么找? 2485682
邀请新用户注册赠送积分活动 1468480
关于科研通互助平台的介绍 1441014