NEFA can serve as good biological markers for the diagnosis of depression in adolescents

萧条(经济学) NEFA公司 心理学 医学 内科学 脂肪酸 化学 生物化学 宏观经济学 经济
作者
Guanxi Liu,Zelin Li,Su‐Yan Lin,Zheng-Yi Luo,Yanan Yin,Yanling Zhou,Yuping Ning
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:352: 342-348 被引量:1
标识
DOI:10.1016/j.jad.2024.01.274
摘要

The incidence of adolescent depression has markedly risen in recent years, with a high recurrence rate into adulthood. Diagnosis in adolescents is challenging due to subjective factors, highlighting the crucial need for objective diagnostic markers. Our study enrolled 204 participants, including healthy controls (n = 88) and first-episode adolescent depression patients (n = 116). Serum samples underwent gas chromatography–mass spectrometry (GC–MS) analysis to assess non-esterified fatty acids (NEFA) expression. Machine learning and ROC analysis were employed to identify potential biomarkers, followed by bioinformatics analysis to explore underlying mechanisms. Nearly all differentially expressed NEFA exhibited significant downregulation. Notably, nonanoic acid, cis-10-pentadecenoic acid, cis-10-carboenoic acid, and cis-11-eicosenoic acid demonstrated excellent performance in distinguishing adolescent depression patients. Metabolite-gene interaction analysis revealed these NEFAs interacted with multiple genes. KEGG pathway analysis on these genes suggested that differentially expressed NEFA may impact PPAR and cAMP signaling pathways. Inclusion of diverse populations for evaluation is warranted. Biomarkers identified in this study require samples that are more in line with the experimental design for external validation, and further basic research is necessary to validate the potential depressive mechanisms of NEFA. The overall reduction in NEFA expression in first-episode adolescent depression patients suggests a potential mediation of depression symptoms through cAMP and PPAR signaling pathways. NEFA levels show promise as a diagnostic tool for identifying first-episode adolescent depression patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
1秒前
2秒前
wanci应助DG采纳,获得10
2秒前
xx_y完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
xgx984发布了新的文献求助10
4秒前
5秒前
5秒前
半夏发布了新的文献求助10
6秒前
阳光念桃发布了新的文献求助10
6秒前
计可盈发布了新的文献求助10
7秒前
7秒前
雪无痕3074完成签到,获得积分20
7秒前
花花完成签到 ,获得积分10
7秒前
罗嘉琦发布了新的文献求助10
7秒前
所所应助善良的采蓝采纳,获得10
8秒前
P小于0_05完成签到,获得积分20
8秒前
8秒前
9秒前
10秒前
10秒前
慕辰发布了新的文献求助10
11秒前
大力盼波发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
彭于晏应助zhanghao采纳,获得10
13秒前
dog发布了新的文献求助10
13秒前
香蕉雪巧发布了新的文献求助10
13秒前
大宝发布了新的文献求助10
13秒前
延胡索发布了新的文献求助10
14秒前
浮游应助信步采纳,获得10
14秒前
15秒前
DG发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496326
求助须知:如何正确求助?哪些是违规求助? 4594041
关于积分的说明 14443302
捐赠科研通 4526660
什么是DOI,文献DOI怎么找? 2480274
邀请新用户注册赠送积分活动 1464895
关于科研通互助平台的介绍 1437685