Non-Invasive Quantification of the Brain [¹⁸F]FDG-PET Using Inferred Blood Input Function Learned From Total-Body Data With Physical Constraint

参数统计 统计参数映射 模式识别(心理学) 均方误差 扫描仪 核医学 计算机科学 人工智能 医学 统计 数学 磁共振成像 放射科
作者
Zhenguo Wang,Yaping Wu,Zeheng Xia,Xinyi Chen,Xiaochen Li,Yan Bai,Yun Zhou,Dong Liang,Hairong Zheng,Yongfeng Yang,Shanshan Wang,Meiyun Wang,Tao Sun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2563-2573 被引量:5
标识
DOI:10.1109/tmi.2024.3368431
摘要

Full quantification of brain PET requires the blood input function (IF), which is traditionally achieved through an invasive and time-consuming arterial catheter procedure, making it unfeasible for clinical routine. This study presents a deep learning based method to estimate the input function (DLIF) for a dynamic brain FDG scan. A long short-term memory combined with a fully connected network was used. The dataset for training was generated from 85 total-body dynamic scans obtained on a uEXPLORER scanner. Time-activity curves from 8 brain regions and the carotid served as the input of the model, and labelled IF was generated from the ascending aorta defined on CT image. We emphasize the goodness-of-fitting of kinetic modeling as an additional physical loss to reduce the bias and the need for large training samples. DLIF was evaluated together with existing methods in terms of RMSE, area under the curve, regional and parametric image quantifications. The results revealed that the proposed model can generate IFs that closer to the reference ones in terms of shape and amplitude compared with the IFs generated using existing methods. All regional kinetic parameters calculated using DLIF agreed with reference values, with the correlation coefficient being 0.961 (0.913) and relative bias being 1.68±8.74% (0.37±4.93%) for [Formula: see text] ( [Formula: see text]. In terms of the visual appearance and quantification, parametric images were also highly identical to the reference images. In conclusion, our experiments indicate that a trained model can infer an image-derived IF from dynamic brain PET data, which enables subsequent reliable kinetic modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ss发布了新的文献求助10
2秒前
2秒前
动听无声发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
学术武陵人完成签到,获得积分10
4秒前
王娟发布了新的文献求助10
4秒前
慕青应助d_z采纳,获得10
5秒前
成就百招发布了新的文献求助10
5秒前
5秒前
潘德莫妮卡完成签到,获得积分10
7秒前
7秒前
董H发布了新的文献求助10
7秒前
传奇3应助超帅秋双采纳,获得10
7秒前
8秒前
dopamine应助唐泽雪穗采纳,获得80
8秒前
情怀应助beili采纳,获得10
8秒前
8秒前
9秒前
10秒前
Lyanph完成签到,获得积分10
10秒前
俏皮连虎完成签到,获得积分10
11秒前
兰薰幽珮发布了新的文献求助30
11秒前
11秒前
BR完成签到,获得积分10
11秒前
12秒前
12秒前
Mmm发布了新的文献求助10
12秒前
St雪完成签到,获得积分10
13秒前
酷波er应助动听无声采纳,获得10
13秒前
14秒前
科研通AI6应助Disci采纳,获得10
14秒前
FashionBoy应助sndurehfcn采纳,获得10
14秒前
药小白完成签到,获得积分10
15秒前
分茂完成签到 ,获得积分10
16秒前
倦鸟归林完成签到,获得积分10
16秒前
加速同调连光的可以超越完成签到,获得积分10
16秒前
发电机完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086165
求助须知:如何正确求助?哪些是违规求助? 4302062
关于积分的说明 13406546
捐赠科研通 4127185
什么是DOI,文献DOI怎么找? 2260201
邀请新用户注册赠送积分活动 1264382
关于科研通互助平台的介绍 1198584