Non-Invasive Quantification of the Brain [¹⁸F]FDG-PET Using Inferred Blood Input Function Learned From Total-Body Data With Physical Constraint

参数统计 统计参数映射 模式识别(心理学) 均方误差 扫描仪 核医学 计算机科学 人工智能 医学 统计 数学 磁共振成像 放射科
作者
Zhenguo Wang,Yaping Wu,Zeheng Xia,Xinyi Chen,Xiaochen Li,Yan Bai,Yun Zhou,Dong Liang,Hairong Zheng,Yongfeng Yang,Shanshan Wang,Meiyun Wang,Tao Sun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2563-2573 被引量:5
标识
DOI:10.1109/tmi.2024.3368431
摘要

Full quantification of brain PET requires the blood input function (IF), which is traditionally achieved through an invasive and time-consuming arterial catheter procedure, making it unfeasible for clinical routine. This study presents a deep learning based method to estimate the input function (DLIF) for a dynamic brain FDG scan. A long short-term memory combined with a fully connected network was used. The dataset for training was generated from 85 total-body dynamic scans obtained on a uEXPLORER scanner. Time-activity curves from 8 brain regions and the carotid served as the input of the model, and labelled IF was generated from the ascending aorta defined on CT image. We emphasize the goodness-of-fitting of kinetic modeling as an additional physical loss to reduce the bias and the need for large training samples. DLIF was evaluated together with existing methods in terms of RMSE, area under the curve, regional and parametric image quantifications. The results revealed that the proposed model can generate IFs that closer to the reference ones in terms of shape and amplitude compared with the IFs generated using existing methods. All regional kinetic parameters calculated using DLIF agreed with reference values, with the correlation coefficient being 0.961 (0.913) and relative bias being 1.68±8.74% (0.37±4.93%) for [Formula: see text] ( [Formula: see text]. In terms of the visual appearance and quantification, parametric images were also highly identical to the reference images. In conclusion, our experiments indicate that a trained model can infer an image-derived IF from dynamic brain PET data, which enables subsequent reliable kinetic modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙温柔完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
彦祖发布了新的文献求助10
2秒前
浙琳完成签到,获得积分10
4秒前
LL发布了新的文献求助10
4秒前
hq完成签到 ,获得积分10
6秒前
6秒前
浙琳发布了新的文献求助10
9秒前
小马甲应助落寞灵安采纳,获得10
11秒前
selena完成签到,获得积分10
12秒前
13秒前
田格本发布了新的文献求助10
13秒前
15秒前
XUUGO发布了新的文献求助10
15秒前
裴白薇完成签到 ,获得积分10
16秒前
20秒前
21秒前
luochen完成签到 ,获得积分0
22秒前
22秒前
Qin完成签到,获得积分10
23秒前
24秒前
重生之我是院士完成签到,获得积分10
25秒前
racheal完成签到,获得积分20
26秒前
落寞灵安发布了新的文献求助10
27秒前
Tsuki发布了新的文献求助10
28秒前
lizishu应助小胖酱采纳,获得10
28秒前
32秒前
077完成签到,获得积分10
35秒前
小施发布了新的文献求助10
35秒前
36秒前
科研通AI6.1应助彦祖采纳,获得10
39秒前
Sahar发布了新的文献求助10
39秒前
懒癌晚期完成签到,获得积分10
39秒前
独特忆灵完成签到,获得积分10
41秒前
42秒前
Adc应助大地采纳,获得10
42秒前
xinxin完成签到,获得积分10
43秒前
1234完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839072
求助须知:如何正确求助?哪些是违规求助? 6136564
关于积分的说明 15602548
捐赠科研通 4957059
什么是DOI,文献DOI怎么找? 2672017
邀请新用户注册赠送积分活动 1617131
关于科研通互助平台的介绍 1572144