End-to-end multibranch network for palm vein recognition and liveness detection

活泼 计算机科学 计算机视觉 人工智能 棕榈 图像处理 模式识别(心理学) 图像(数学) 理论计算机科学 物理 量子力学
作者
Wenzhong Shen,Juan Liang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (01)
标识
DOI:10.1117/1.jei.33.1.013054
摘要

Palm vein biometric technology is widely regarded as highly secure due to its challenging-to-forge characteristics. However, recent empirical studies have revealed that forged vein patterns printed on paper can deceive palm vein recognition systems, thereby leading to security breaches. The conventional approach to address this issue involves performing liveness detection followed by preprocessing the palm vein image prior to recognition, which increases the algorithmic complexity and might adversely affect overall performance. To overcome these limitations, we propose a multibranch network (PVCodeNet++) for end-to-end integration of palm vein recognition and liveness detection using a multitask learning approach. Specifically, our proposed model leverages network weight sharing and mutual assistance between network branches to enhance overall performance. We utilize the transformer encoder as the underlying shared component, employ central difference convolution for the liveness detection branch, introduce the normalized attention mechanism, and balance the multitask loss through the uncertainty weighting method. Experiments on palm vein liveness and spoofing datasets show that the proposed PVCodeNet++ has an equal error rate of 0 for recognition performance metrics on various datasets, a significant improvement in the intraclass compactness and interclass separability separation metric, increasing from 7.88 to 9.37 on the PolyU dataset; and an average classification error rate of 0 for liveness detection performance metrics, demonstrating the feasibility and effectiveness of the method proposed.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代CC完成签到 ,获得积分10
刚刚
2秒前
科研通AI6.1应助LucyMartinez采纳,获得10
3秒前
melon发布了新的文献求助10
3秒前
4秒前
4秒前
冷静的手套完成签到 ,获得积分10
7秒前
8秒前
无花果应助良辰采纳,获得10
9秒前
Akim应助小白采纳,获得10
10秒前
星辰大海应助难过千凡采纳,获得10
10秒前
niufuking发布了新的文献求助10
11秒前
11秒前
13秒前
橘生饼发布了新的文献求助10
15秒前
15秒前
属鼠我啊发布了新的文献求助10
16秒前
17秒前
17秒前
MSYzack发布了新的文献求助10
23秒前
生动的凝蕊完成签到 ,获得积分20
23秒前
醒醒完成签到,获得积分20
25秒前
Lucas应助juan采纳,获得10
26秒前
黑猫完成签到,获得积分10
26秒前
26秒前
结实抽屉完成签到,获得积分10
27秒前
27秒前
tonyguo完成签到,获得积分10
28秒前
Lucas应助唠叨的导师采纳,获得10
30秒前
难过千凡发布了新的文献求助10
30秒前
青柠完成签到 ,获得积分10
33秒前
白桦完成签到,获得积分20
33秒前
田T应助Fred采纳,获得10
35秒前
天天快乐应助LucyMartinez采纳,获得10
38秒前
41秒前
lct360完成签到,获得积分10
43秒前
SiriHow应助DXM采纳,获得10
43秒前
三三完成签到,获得积分10
43秒前
善学以致用应助难过千凡采纳,获得10
47秒前
Lee完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870051
求助须知:如何正确求助?哪些是违规求助? 6457786
关于积分的说明 15662561
捐赠科研通 4986068
什么是DOI,文献DOI怎么找? 2688646
邀请新用户注册赠送积分活动 1630981
关于科研通互助平台的介绍 1589097