Machine learning-based prediction of abdominal aortic aneurysms for individualized patient care

医学 腹主动脉瘤 放射科 重症监护医学 心脏病学 动脉瘤
作者
Kelli L. Summers,Edmund Kenneth Kerut,Filip To,Claudie Sheahan,Malachi Sheahan
出处
期刊:Journal of Vascular Surgery [Elsevier BV]
卷期号:79 (5): 1057-1067.e2 被引量:8
标识
DOI:10.1016/j.jvs.2023.12.046
摘要

OBJECTIVE The United States Preventative Services Task Force (USPSTF) guidelines for screening for abdominal aortic aneurysms (AAA) are broad and exclude many at risk groups. We analyzed a large AAA screening database to examine the utility of a novel machine learning (ML) model for predicting individual risk of AAA. METHODS We created a ML model to predict the presence of AAAs (>3cm) from the database of a national non-profit screening organization (AAAneurysm Outreach). Participants self-reported demographics and co-morbidities. The model is a two-layered feed-forward shallow network. The ML model then generated AAA probability based on patient characteristics. We evaluated graphs to determine significant factors, and then compared those graphs to a traditional logistic regression model. RESULTS We analyzed a patient cohort of 10,033 subjects with an AAA prevalence of 2.74%. Consistent with logistic regression analysis, the ML model identified the following predictors of AAA: Caucasian race, male gender, increasing age, and recent or past smoker with recent smoker having a more profound affect (P < .05). Interestingly, the ML model showed BMI was associated with likelihood of AAAs, especially for younger females. The ML model also identified a higher than predicted risk of AAA in several groups including female non-smokers with cardiac disease, female diabetics, those with a family history of AAA, and those with hypertension or hyperlipidemia at older ages. An elevated BMI conveyed a higher than expected risk in male smokers and all females. The ML model also identified a complex relationship of both diabetes mellitus and hyperlipidemia with gender. Family history of AAA was a more important risk factor in the ML model for both men and women too. CONCLUSIONS We successfully developed an ML model based on an AAA screening database that unveils a complex relationship between AAA prevalence and many risk factors, including BMI. The model also highlights the need to expand AAA screening efforts in women. Using ML models in the clinical setting has the potential to deliver precise, individualized screening recommendations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请问发布了新的文献求助10
2秒前
7秒前
刘小明完成签到,获得积分10
7秒前
8秒前
乐乐应助头发乱了采纳,获得10
9秒前
美满的冬卉完成签到 ,获得积分10
9秒前
谦让寒云完成签到 ,获得积分10
11秒前
平淡惋清发布了新的文献求助10
13秒前
yz47完成签到,获得积分10
13秒前
xiaolang2004完成签到,获得积分10
15秒前
17秒前
脑洞疼应助青栞采纳,获得10
19秒前
CCC完成签到,获得积分10
21秒前
CodeCraft应助任性诗蕾采纳,获得10
30秒前
34秒前
科研通AI5应助刘小明采纳,获得10
36秒前
我睡觉的时候不困完成签到 ,获得积分10
37秒前
科研通AI5应助yz47采纳,获得10
40秒前
青栞发布了新的文献求助10
40秒前
41秒前
任性诗蕾完成签到,获得积分10
43秒前
44秒前
45秒前
47秒前
48秒前
cure发布了新的文献求助10
49秒前
任性诗蕾发布了新的文献求助10
50秒前
Hello应助ira采纳,获得10
50秒前
LANER完成签到 ,获得积分10
51秒前
刘小明发布了新的文献求助10
54秒前
lzp完成签到 ,获得积分10
55秒前
激昂的秀发完成签到,获得积分10
55秒前
阔达曲奇发布了新的文献求助10
58秒前
Grace0610完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
黄院士完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777940
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214860
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315