A Novel Feature Representation Method Based on Distances Between Statistical Matrices of Acoustic Emission Waveforms

波形 特征(语言学) 谐波 声发射 计算机科学 代表(政治) 统计假设检验 模式识别(心理学) 灵敏度(控制系统) 噪音(视频) 动态时间归整 统计模型 算法 数据挖掘 数学 人工智能 声学 电子工程 统计 工程类 物理 电信 语言学 哲学 雷达 电压 政治 法学 政治学 电气工程 图像(数学)
作者
Feng Li,Zhensheng Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3335515
摘要

Acoustic emission (AE) has gained increasing popularity in non-destructive testing and process monitoring due to its high sensitivity to malfunctions. However, valuable information is sometimes overwhelmed by high levels of background noise, making it quite difficult to recognize the malfunctions. Therefore, it is essential to address the issue of identifying weak emission sources and obtaining an accurate representation of the original waveform. This study presents a novel feature representation method involving the calculation of distances between the statistical matrices of the original AE waveforms. In the proposed method, the waveform is considered and treated as a connection of numerous harmonics from a micro perspective. Consequently, only the amplitude and half-period of the harmonics are extracted as features to represent them, which means that data can be greatly reduced in size. Building on this, statistical matrices are proposed and defined to count the combination of amplitude and half-period to further characterize the statistical properties of the signals. Subsequently, to differentiate between statistical matrices, distances between them are calculated based on matrix norms. A standardized procedure for calculating distances between statistical matrices has been formulated. Tests conducted to detect filament absence under both single and multiple conditions, as well as for detecting warping deformation, validate the feasibility and effectiveness of the proposed method. The influence of key parameters, including segment length and grid size, is discussed. This method offers an alternative AE feature representation approach applicable in practical scenarios for process monitoring and fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没烦恼完成签到,获得积分10
1秒前
烟花应助Mzhao采纳,获得10
1秒前
2秒前
科研通AI5应助Nereus采纳,获得10
2秒前
科研通AI5应助qianyuan采纳,获得10
3秒前
秘密完成签到,获得积分10
3秒前
3秒前
yiding完成签到 ,获得积分10
4秒前
5秒前
5秒前
kingripple发布了新的文献求助10
7秒前
淡淡的筝发布了新的文献求助10
8秒前
wocala完成签到 ,获得积分10
8秒前
9秒前
CCC完成签到,获得积分10
9秒前
9秒前
cxy发布了新的文献求助10
10秒前
啊啊完成签到,获得积分20
11秒前
12秒前
13秒前
wang0626完成签到 ,获得积分10
13秒前
GB发布了新的文献求助10
14秒前
000发布了新的文献求助10
14秒前
14秒前
14秒前
LaTeXer给怡然凌柏的求助进行了留言
16秒前
牙牙发布了新的文献求助10
16秒前
顺利的觅云完成签到,获得积分10
16秒前
小二郎应助333水采纳,获得10
16秒前
qianyuan发布了新的文献求助10
18秒前
可爱的函函应助科研兄采纳,获得10
18秒前
18秒前
RAY完成签到,获得积分10
19秒前
聪明白羊完成签到,获得积分10
19秒前
Orange应助尊敬的凝丹采纳,获得10
20秒前
小马甲应助无限妙梦采纳,获得10
20秒前
S1008发布了新的文献求助10
21秒前
标致冰海完成签到 ,获得积分10
22秒前
啊啊发布了新的文献求助20
23秒前
无私乐驹发布了新的文献求助10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214