已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:29
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WQ完成签到,获得积分10
刚刚
Capybara完成签到,获得积分10
1秒前
WQ发布了新的文献求助10
3秒前
咿呀咿呀完成签到 ,获得积分10
5秒前
9秒前
甜美怜蕾完成签到,获得积分10
10秒前
12秒前
英姑应助阿龙采纳,获得10
14秒前
SYLH应助fenfen好学采纳,获得30
15秒前
暖暖完成签到 ,获得积分10
16秒前
石头完成签到 ,获得积分10
17秒前
dn发布了新的文献求助10
17秒前
舒适访风完成签到,获得积分10
19秒前
20秒前
21秒前
24秒前
26秒前
28秒前
29秒前
小马甲应助安详的向露采纳,获得10
30秒前
榛子发布了新的文献求助10
33秒前
小杨爱吃羊完成签到 ,获得积分10
33秒前
34秒前
科研通AI2S应助睁不开眼睛采纳,获得10
38秒前
zaojunqi完成签到,获得积分20
40秒前
chenchen发布了新的文献求助30
41秒前
筱xiao完成签到,获得积分20
48秒前
52秒前
YE发布了新的文献求助10
53秒前
54秒前
无奈发布了新的文献求助10
54秒前
十七完成签到 ,获得积分10
54秒前
xikawu完成签到,获得积分10
55秒前
57秒前
小张完成签到 ,获得积分10
58秒前
fei完成签到 ,获得积分10
58秒前
劉浏琉完成签到,获得积分10
1分钟前
tiamr发布了新的文献求助10
1分钟前
YE完成签到,获得积分10
1分钟前
hp571发布了新的文献求助10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047311
求助须知:如何正确求助?哪些是违规求助? 3585151
关于积分的说明 11394472
捐赠科研通 3312485
什么是DOI,文献DOI怎么找? 1822608
邀请新用户注册赠送积分活动 894536
科研通“疑难数据库(出版商)”最低求助积分说明 816351