Decoupling and Integration Network for Camouflaged Object Detection

计算机科学 解耦(概率) 对象(语法) 人工智能 目标检测 计算机安全 模式识别(心理学) 工程类 控制工程
作者
Xiaofei Zhou,Zhicong Wu,Runmin Cong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7114-7129 被引量:49
标识
DOI:10.1109/tmm.2024.3360710
摘要

Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received more and more concerns. However, the performance of existing camouflaged object detection methods is still unsatisfactory, especially when dealing with complex scenes. Therefore, in this paper, we propose a novel Decoupling and Integration Network (DINet) to detect camouflaged objects. Here, the depiction of camouflaged objects can be regarded as the iterative decoupling and integration of the body features and detail features, where the former focuses on the center of camouflaged objects and the latter contains pixels around edges. Concretely, firstly, we deploy two complementary decoder branches including a detail branch and a body branch to learn the decoupling features, namely body decoder features and detail decoder features. Particularly, each decoder block of the two branches incorporates features from three components, i.e. , the previous interactive feature fusion (IFF) module, adjacent encoder layers, and corresponding encoder layer. Besides, to further elevate the body decoder features, the body blocks also introduce the global contextual information, which is the combination of all body encoder features via the global context (GC) unit, to provide coarse object location information. Secondly, to integrate the two decoupling decoder features, we deploy the interactive feature fusion (IFF) module based on the interactive combination and channel attention. Following this way, we can progressively provide a complete and accurate representation for camouflaged objects. Extensive experiments on three public challenging datasets, including CAMO, COD10K, and NC4K, show that our DINet presents competitive performance when compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYC完成签到,获得积分10
1秒前
小吴同学发布了新的文献求助30
1秒前
2秒前
清修完成签到,获得积分10
2秒前
2秒前
3秒前
脑洞疼应助白三烯采纳,获得10
3秒前
uu完成签到 ,获得积分10
4秒前
4秒前
开朗的紫萍关注了科研通微信公众号
4秒前
qsy完成签到,获得积分10
4秒前
lucinda发布了新的文献求助10
5秒前
5秒前
ytingLI完成签到,获得积分10
5秒前
思源应助李伟采纳,获得10
5秒前
七七完成签到,获得积分10
5秒前
小小发布了新的文献求助10
6秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助ccc采纳,获得10
7秒前
7秒前
乐正如娆完成签到,获得积分10
8秒前
8秒前
oatmealR完成签到,获得积分20
8秒前
爱听歌时光完成签到,获得积分10
8秒前
8秒前
FashionBoy应助听话的寄灵采纳,获得10
8秒前
天天快乐应助包觅风采纳,获得30
9秒前
9秒前
9秒前
9秒前
刘香发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助100
9秒前
9秒前
ding完成签到,获得积分10
10秒前
yyzhou应助可靠的嫣然采纳,获得10
10秒前
10秒前
10秒前
酷波er应助友好的天奇采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884468
求助须知:如何正确求助?哪些是违规求助? 4169693
关于积分的说明 12938631
捐赠科研通 3930210
什么是DOI,文献DOI怎么找? 2156475
邀请新用户注册赠送积分活动 1174807
关于科研通互助平台的介绍 1079620