Software Testing With Large Language Models: Survey, Landscape, and Vision

计算机科学 软件工程 软件 程序设计语言
作者
Junjie Wang,Yuchao Huang,Chunyang Chen,Zhe Liu,Song Wang,Qing Wang
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (4): 911-936 被引量:268
标识
DOI:10.1109/tse.2024.3368208
摘要

Pre-trained large language models (LLMs) have recently emerged as a breakthrough technology in natural language processing and artificial intelligence, with the ability to handle large-scale datasets and exhibit remarkable performance across a wide range of tasks. Meanwhile, software testing is a crucial undertaking that serves as a cornerstone for ensuring the quality and reliability of software products. As the scope and complexity of software systems continue to grow, the need for more effective software testing techniques becomes increasingly urgent, making it an area ripe for innovative approaches such as the use of LLMs. This paper provides a comprehensive review of the utilization of LLMs in software testing. It analyzes 102 relevant studies that have used LLMs for software testing, from both the software testing and LLMs perspectives. The paper presents a detailed discussion of the software testing tasks for which LLMs are commonly used, among which test case preparation and program repair are the most representative. It also analyzes the commonly used LLMs, the types of prompt engineering that are employed, as well as the accompanied techniques with these LLMs. It also summarizes the key challenges and potential opportunities in this direction. This work can serve as a roadmap for future research in this area, highlighting potential avenues for exploration, and identifying gaps in our current understanding of the use of LLMs in software testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
斯文的万恶完成签到,获得积分10
5秒前
云帆发布了新的文献求助10
6秒前
小二郎应助acronema采纳,获得10
7秒前
测量幽冥完成签到 ,获得积分10
8秒前
BINGBING1230发布了新的文献求助10
8秒前
打打应助genius采纳,获得10
9秒前
幽默的访冬完成签到,获得积分10
12秒前
科研通AI6.1应助麻辣香锅采纳,获得10
13秒前
15秒前
完美世界应助云帆采纳,获得10
17秒前
醉舞烟罗发布了新的文献求助10
19秒前
lyttt完成签到 ,获得积分10
19秒前
leid完成签到 ,获得积分10
21秒前
脑洞疼应助Hazellee采纳,获得10
22秒前
乐观完成签到 ,获得积分10
22秒前
lydia完成签到,获得积分10
23秒前
24秒前
Akim应助天天就是我采纳,获得30
24秒前
一味愚完成签到,获得积分10
28秒前
哈哈哈哈哈哈完成签到,获得积分10
28秒前
个性的雪旋完成签到 ,获得积分10
29秒前
隐形曼青应助落后的小蕊采纳,获得10
31秒前
无极微光应助仙林AK47采纳,获得20
31秒前
32秒前
科研通AI6.1应助Qsss采纳,获得10
33秒前
36秒前
现世平发布了新的文献求助10
36秒前
sanxuan完成签到 ,获得积分10
37秒前
川川完成签到 ,获得积分10
37秒前
着急的梦竹完成签到,获得积分10
37秒前
华仔应助zcy采纳,获得10
38秒前
38秒前
nanzhouzi关注了科研通微信公众号
39秒前
大个应助壮观静柏采纳,获得10
39秒前
传奇3应助LiuZhe采纳,获得10
40秒前
ilk666完成签到,获得积分10
40秒前
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5843080
求助须知:如何正确求助?哪些是违规求助? 6178412
关于积分的说明 15611047
捐赠科研通 4960144
什么是DOI,文献DOI怎么找? 2674189
邀请新用户注册赠送积分活动 1619000
关于科研通互助平台的介绍 1574208