SDR2Tr‐GAN: A Novel Medical Image Fusion Pipeline Based on GAN With SDR2 Module and Transformer Optimization Strategy

计算机科学 融合 管道(软件) 材料科学 变压器 人工智能 光电子学 计算机视觉 电气工程 工程类 电压 语言学 哲学 程序设计语言
作者
Ying Cheng,Xianjin Fang,Zhi‐Ri Tang,Zekuan Yu,Linlin Sun,Li Zhu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (6)
标识
DOI:10.1002/ima.23208
摘要

ABSTRACT In clinical practice, radiologists diagnose brain tumors with the help of different magnetic resonance imaging (MRI) sequences and judge the type and grade of brain tumors. It is hard to realize the brain tumor computer‐aided diagnosis system only with a single MRI sequence. However, the existing multiple MRI sequence fusion methods have limitations in the enhancement of tumor details. To improve fusion details of multi‐modality MRI images, a novel conditional generative adversarial fusion network based on three discriminators and a Staggered Dense Residual2 (SDR2) module, named SDR2Tr‐GAN, was proposed in this paper. In the SDR2Tr‐GAN network pipeline, the generator consists of an encoder, decoder, and fusion strategy that can enhance the feature representation. SDR2 module is developed with Res2Net into the encoder to extract multi‐scale features. In addition, a Multi‐Head Spatial/Channel Attention Transformer, as a fusion strategy to strengthen the long‐range dependencies of global context information, is integrated into our pipeline. A Mask‐based constraint as a novel fusion optimization mechanism was designed, focusing on enhancing salient feature details. The Mask‐based constraint utilizes the segmentation mask obtained by the pre‐trained Unet and Ground Truth to optimize the training process. Meanwhile, MI and SSIM loss jointly improve the visual perception of images. Extensive experiments were conducted on the public BraTS2021 dataset. The visual and quantitative results demonstrate that the proposed method can simultaneously enhance both global image quality and local texture details in multi‐modality MRI images. Besides, our SDR2Tr‐GAN outperforms the other state‐of‐the‐art fusion methods regarding subjective and objective evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由灵安发布了新的文献求助10
刚刚
在水一方应助LONG采纳,获得10
刚刚
诺索发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
liangliang完成签到,获得积分20
1秒前
1秒前
1秒前
所所应助xttawy采纳,获得10
1秒前
1秒前
彭于晏应助xiaokezhang采纳,获得10
1秒前
2秒前
广廿巾完成签到,获得积分10
2秒前
kxy0311发布了新的文献求助10
2秒前
上官若男应助xttawy采纳,获得10
2秒前
2秒前
游明霞关注了科研通微信公众号
2秒前
yfzhang完成签到,获得积分10
3秒前
祖f发布了新的文献求助10
3秒前
hanlin完成签到,获得积分10
3秒前
科研底层韭菜完成签到,获得积分10
3秒前
科研通AI5应助威武的冷风采纳,获得10
3秒前
3秒前
3秒前
kk完成签到,获得积分10
4秒前
dew应助ah_junlei采纳,获得10
4秒前
4秒前
枫叶完成签到,获得积分10
5秒前
韩小青发布了新的文献求助10
5秒前
5秒前
shadow完成签到,获得积分10
5秒前
酷酷海白完成签到 ,获得积分10
6秒前
asss完成签到,获得积分10
6秒前
min发布了新的文献求助10
6秒前
jewel9发布了新的文献求助10
7秒前
8秒前
Hello应助jufefit采纳,获得10
8秒前
9秒前
yym发布了新的文献求助10
9秒前
归陌完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699