Semantic mining of functional de novo genes from a genomic language model

计算机科学 计算生物学 自然语言处理 基因 人工智能 生物 语言学 遗传学 哲学
作者
Anand S. Merchant,S. B. King,Éric Nguyen,Brian Hie
标识
DOI:10.1101/2024.12.17.628962
摘要

Abstract Generative genomics models can design increasingly complex biological systems. However, effectively controlling these models to generate novel sequences with desired functions remains a major challenge. Here, we show that Evo, a 7-billion parameter genomic language model, can perform function-guided design that generalizes beyond natural sequences. By learning semantic relationships across multiple genes, Evo enables a genomic “autocomplete” in which a DNA prompt encoding a desired function instructs the model to generate novel DNA sequences that can be mined for similar functions. We term this process “semantic mining,” which, unlike traditional genome mining, can access a sequence landscape unconstrained by discovered evolutionary innovation. We validate this approach by experimentally testing the activity of generated anti-CRISPR proteins and toxin-antitoxin systems, including de novo genes with no significant homology to any natural protein. Strikingly, in-context protein design with Evo achieves potent activity and high experimental success rates even in the absence of structural hypotheses, known evolutionary conservation, or task-specific fine-tuning. We then use Evo to autocomplete millions of prompts to produce SynGenome, a first-of-its-kind database containing over 120 billion base pairs of AI-generated genomic sequences that enables semantic mining across many possible functions. The semantic mining paradigm enables functional exploration that ventures beyond the observed evolutionary universe.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助zjl采纳,获得10
刚刚
量子星尘发布了新的文献求助10
3秒前
眉间一把刀完成签到,获得积分10
3秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
4秒前
坦率灵槐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
kate应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
潇洒的初柔完成签到,获得积分10
4秒前
坦率灵槐应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得30
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
椰子应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
椰子应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
HopeStar发布了新的文献求助10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
大模型应助魔幻乘云采纳,获得10
5秒前
JamesPei应助Millar采纳,获得10
5秒前
保藏完成签到,获得积分10
6秒前
7秒前
简单巧蕊完成签到,获得积分10
8秒前
9秒前
无花果应助美满的大象采纳,获得10
9秒前
11秒前
CC完成签到 ,获得积分10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660180
求助须知:如何正确求助?哪些是违规求助? 4831795
关于积分的说明 15089378
捐赠科研通 4818785
什么是DOI,文献DOI怎么找? 2578783
邀请新用户注册赠送积分活动 1533379
关于科研通互助平台的介绍 1492124