Prediction on mechanical properties of engineered cementitious composites: An experimental and machine learning approach

人工神经网络 极限抗拉强度 共轭梯度法 材料科学 抗弯强度 抗压强度 水准点(测量) 相关系数 硬化(计算) 计算机科学 实验数据 胶凝的 复合材料 算法 机器学习 数学 统计 大地测量学 地理 水泥 图层(电子)
作者
N. Shanmugasundaram,Praveenkumar Shanmugam
出处
期刊:Structural Concrete [Wiley]
卷期号:26 (3): 2548-2587 被引量:4
标识
DOI:10.1002/suco.202400231
摘要

Abstract The adoption of engineered cementitious composites (ECC) has witnessed a notable surge in recent years, primarily because of their remarkable strain‐hardening behavior and other hardened properties. On the other hand, machine learning (ML) approaches have been widely employed to predict various properties in engineering applications by incorporating an ‘ n ’ number of inputs and target data. An ML aids in understanding the selection, properties, and blending ability of materials, thereby reducing the cost and duration of research. In this study, an ML technique based on an artificial neural network (ANN) is utilized to predict the mechanical properties of ECC with different binders. For this purpose, several parameters are collected from the present investigation and various literature sources, and the collected data are trained using three algorithms, namely, scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg–Marquardt (LM). The correlations and variations between the experimental and predicted outputs are analyzed. In addition, a comparison between the experimental results obtained by each investigator and the corresponding outputs predicted by the individual algorithms is highlighted. The LM algorithm achieved a mean regression value of 0.910 for the prediction of compressive strength, whereas the BR showed values of 0.908 and 0.852 for predicting the direct tensile and flexural properties of ECC, respectively. Furthermore, considering the standard benchmark, the proposed model exhibited a high correlation with the coefficient of determination ( R 2 ).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
喜羊羊完成签到 ,获得积分10
刚刚
小付发布了新的文献求助10
3秒前
9秒前
刘丰发布了新的文献求助10
13秒前
涂江渝完成签到 ,获得积分10
17秒前
NexusExplorer应助马上来采纳,获得10
17秒前
Vincent24S完成签到,获得积分10
26秒前
丘比特应助小付采纳,获得10
27秒前
ccm应助黄冠采纳,获得10
27秒前
11发布了新的文献求助10
28秒前
乐乐应助小猫采纳,获得10
28秒前
JAS发布了新的文献求助10
28秒前
BowieHuang应助伶俐的颤采纳,获得10
28秒前
小赵完成签到,获得积分10
30秒前
充电宝应助jhxie采纳,获得30
30秒前
马上来完成签到,获得积分10
31秒前
39秒前
11完成签到,获得积分10
40秒前
41秒前
外向太阳完成签到,获得积分10
43秒前
44秒前
李通通发布了新的文献求助30
50秒前
隐形曼青应助ai采纳,获得10
50秒前
小马甲应助cl采纳,获得10
52秒前
勤恳雅莉应助活泼山雁采纳,获得10
53秒前
赘婿应助油柑美式采纳,获得10
54秒前
57秒前
58秒前
1分钟前
anwen发布了新的文献求助10
1分钟前
小付发布了新的文献求助10
1分钟前
无心的尔阳完成签到 ,获得积分10
1分钟前
小猫发布了新的文献求助10
1分钟前
1分钟前
NICAI应助游侠EX采纳,获得10
1分钟前
纯真的曼荷完成签到 ,获得积分10
1分钟前
1分钟前
追寻的访文完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558160
求助须知:如何正确求助?哪些是违规求助? 4643117
关于积分的说明 14670585
捐赠科研通 4584558
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459713