Patient‐ and fraction‐specific magnetic resonance volume reconstruction from orthogonal images with generative adversarial networks

等中心 人口 磁共振成像 均方误差 人工智能 基本事实 计算机科学 核医学 数学 模式识别(心理学) 统计 放射科 医学 成像体模 环境卫生
作者
Hideaki Hirashima,Dejun Zhou,Nobutaka Mukumoto,Haruo Inokuchi,Nobunari Hamaura,Mutsumi Yamagishi,Mai Sakagami,Naoki Mukumoto,Mitsuhiro Nakamura,Keiko Shibuya
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17668
摘要

Abstract Background Although deep learning (DL) methods for reconstructing 3D magnetic resonance (MR) volumes from 2D MR images yield promising results, they require large amounts of training data to perform effectively. To overcome this challenge, fine‐tuning—a transfer learning technique particularly effective for small datasets—presents a robust solution for developing personalized DL models. Purpose A 2D to 3D conditional generative adversarial network (GAN) model with a patient‐ and fraction‐specific fine‐tuning workflow was developed to reconstruct synthetic 3D MR volumes using orthogonal 2D MR images for online dose adaptation. Methods A total of 2473 3D MR volumes were collected from 43 patients. The training and test datasets were separated into 34 and 9 patients, respectively. All patients underwent MR‐guided adaptive radiotherapy using the same imaging protocol. The population data contained 2047 3D MR volumes from the training dataset. Population data were used to train the population‐based GAN model. For each fraction of the remaining patients, the population model was fine‐tuned with the 3D MR volumes acquired before beam irradiation of the fraction, named the fine‐tuned model. The performance of the fine‐tuned model was tested using the 3D MR volume acquired immediately after the beam delivery of the fraction. The model's input was a pair of axial and sagittal MR images at the isocenter level, and the output was a 3D MR volume. Model performance was evaluated using the structural similarity index measure (SSIM), peak signal‐to‐noise ratio (PSNR), root mean square error (RMSE), and mean absolute error (MAE). Moreover, the prostate, bladder, and rectum in the predicted MR images were manually segmented. To assess geometric accuracy, the 2D Dice Similarity Coefficient (DSC) and 2D Hausdorff Distance (HD) were calculated. Results A total of 84 3D MR volumes were included in the performance testing. The mean ± standard deviation (SD) of SSIM, PSNR, RMSE, and MAE were 0.64 ± 0.10, 93.9 ± 1.5 dB, 0.050 ± 0.009, and 0.036 ± 0.007 for the population model and 0.72 ± 0.09, 96.2 ± 1.8 dB, 0.041 ± 0.007, and 0.028 ± 0.006 for the fine‐tuned model, respectively. The image quality of the fine‐tuned model was significantly better than that of the population model ( p < 0.05). The mean ± SD of DSC and HD of the population model were 0.79 ± 0.08 and 1.70 ± 2.35 mm for prostate, 0.81 ± 0.10 and 2.75 ± 1.53 mm for bladder, and 0.72 ± 0.08 and 1.93 ± 0.59 mm for rectum. Contrarily, the mean ± SD of DSC and HD of the fine‐tuned model were 0.83 ± 0.06 and 1.29 ± 0.77 mm for prostate, 0.85 ± 0.07 and 2.16 ± 1.09 mm for bladder, and 0.77 ± 0.08 and 1.57 ± 0.52 mm for rectum. The geometric accuracy of the fine‐tuned model was significantly improved than that of the population model ( p < 0.05). Conclusion By employing a patient‐ and fraction‐specific fine‐tuning approach, the GAN model demonstrated promising accuracy despite limited data availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖福艳发布了新的文献求助10
1秒前
活力妙彤发布了新的文献求助10
1秒前
3秒前
打嗝死猫完成签到,获得积分10
3秒前
可爱的函函应助肖福艳采纳,获得10
5秒前
MuMu完成签到,获得积分10
5秒前
binbin发布了新的文献求助10
7秒前
牧歌完成签到,获得积分10
8秒前
852应助GQ采纳,获得10
12秒前
Lore完成签到 ,获得积分10
14秒前
LabRat完成签到 ,获得积分10
16秒前
19秒前
流飒完成签到,获得积分10
26秒前
26秒前
俏皮的山水完成签到,获得积分10
27秒前
yin完成签到 ,获得积分10
27秒前
副本完成签到 ,获得积分10
28秒前
GQ发布了新的文献求助10
30秒前
怕孤独的忆南完成签到,获得积分10
33秒前
宓广缘完成签到 ,获得积分10
49秒前
Lucas应助暴躁的信封采纳,获得10
52秒前
歪方橘完成签到 ,获得积分10
53秒前
德尔人完成签到,获得积分10
55秒前
55秒前
Yanfei完成签到 ,获得积分10
58秒前
wshwx发布了新的文献求助10
59秒前
香草冰淇淋完成签到,获得积分10
59秒前
psm发布了新的文献求助20
59秒前
1分钟前
1分钟前
superfatcat完成签到,获得积分10
1分钟前
1分钟前
暴躁的信封完成签到,获得积分10
1分钟前
平常的刺猬完成签到 ,获得积分10
1分钟前
Jasper应助小豆豆采纳,获得10
1分钟前
蔡翌文完成签到 ,获得积分10
1分钟前
平淡的火龙果完成签到,获得积分10
1分钟前
1分钟前
RuoxuanWang完成签到 ,获得积分10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776410
求助须知:如何正确求助?哪些是违规求助? 3321809
关于积分的说明 10207979
捐赠科研通 3037175
什么是DOI,文献DOI怎么找? 1666560
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872