Communication Efficient Federated Learning for Multi-Organ Segmentation via Knowledge Distillation with Image Synthesis

计算机科学 图像分割 分割 人工智能 蒸馏 图像(数学) 计算机视觉 模式识别(心理学) 化学 有机化学
作者
Soopil Kim,Hee Jung Park,Philip Chikontwe,Myeongkyun Kang,Kyong Hwan Jin,Ehsan Adeli,Kilian M. Pohl,Sang Hyun Park
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3525581
摘要

Federated learning (FL) methods for multi-organ segmentation in CT scans are gaining popularity, but generally require numerous rounds of parameter exchange between a central server and clients. This repetitive sharing of parameters between server and clients may not be practical due to the varying network infrastructures of clients and the large transmission of data. Further increasing repetitive sharing results from data heterogeneity among clients, i.e., clients may differ with respect to the type of data they share. For example, they might provide label maps of different organs (i.e. partial labels) as segmentations of all organs shown in the CT are not part of their clinical protocol. To this end, we propose an efficient communication approach for FL with partial labels. Specifically, parameters of local models are transmitted once to a central server and the global model is trained via knowledge distillation (KD) of the local models. While one can make use of unlabeled public data as inputs for KD, the model accuracy is often limited due to distribution shifts between local and public datasets. Herein, we propose to generate synthetic images from clients' models as additional inputs to mitigate data shifts between public and local data. In addition, our proposed method offers flexibility for additional finetuning through several rounds of communication using existing FL algorithms, leading to enhanced performance. Extensive evaluation on public datasets in few communication FL scenario reveals that our approach substantially improves over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu55完成签到,获得积分10
1秒前
顾矜应助研友_nvggxZ采纳,获得10
2秒前
浅浅殇完成签到,获得积分10
2秒前
英俊的铭应助每日洋洋采纳,获得30
2秒前
麦子完成签到,获得积分10
2秒前
科研通AI5应助归海诗珊采纳,获得10
3秒前
eleven发布了新的文献求助10
3秒前
李荣航发布了新的文献求助10
3秒前
无花果应助陌路孤星采纳,获得10
3秒前
领导范儿应助香蕉采纳,获得10
5秒前
34101127发布了新的文献求助10
5秒前
超级雨安发布了新的文献求助10
7秒前
7秒前
benj完成签到,获得积分10
8秒前
打打应助依梦采纳,获得10
9秒前
在水一方应助祖之微笑采纳,获得10
9秒前
10秒前
小五发布了新的文献求助10
10秒前
10秒前
Warming完成签到 ,获得积分10
11秒前
JamesPei应助wu采纳,获得30
11秒前
12秒前
12秒前
hby完成签到,获得积分20
13秒前
渔婆完成签到,获得积分10
14秒前
14秒前
水若琳完成签到,获得积分10
14秒前
慕昊强发布了新的文献求助10
15秒前
赘婿应助陌路孤星采纳,获得10
15秒前
orixero应助别再困了采纳,获得10
15秒前
JamesPei应助易哒哒采纳,获得10
15秒前
17秒前
乐正乘风应助专一的白凝采纳,获得10
17秒前
徐大大完成签到,获得积分20
18秒前
淡淡芯完成签到 ,获得积分10
18秒前
19秒前
ff发布了新的文献求助30
19秒前
Akim应助eleven采纳,获得10
19秒前
李健的粉丝团团长应助yulk采纳,获得10
20秒前
飞想思完成签到,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304