Efficient Blade‐Coated Wide‐Bandgap and Tandem Perovskite Solar Cells via a Three‐Step Restraining Strategy

成核 材料科学 结晶 钙钛矿(结构) 带隙 能量转换效率 涂层 串联 纳米技术 化学工程 光电子学 复合材料 化学 有机化学 工程类
作者
Hongyi Fang,Weicheng Shen,Hongling Guan,Guoyi Chen,Guang Li,Wei Ai,Shiqiang Fu,Zuxiong Xu,Weiqing Chen,Peng Jia,Zhenhua Yu,Shanglin Wang,Zhiqiu Yu,Qingxian Lin,Jiahao Wang,Wenwen Zheng,Dexin Pu,Guojia Fang,Weijun Ke
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (7): e2414790-e2414790 被引量:22
标识
DOI:10.1002/adma.202414790
摘要

Abstract Blade‐coating techniques have attracted significant attention for perovskite solar cells (PSCs) due to their high precursor utilization and simplicity. However, the power conversion efficiency (PCE) of blade‐coated PSCs often lags behind that of spin‐coated devices, mainly due to difficulties in precisely controlling perovskite film formation during pre‐nucleation, heterogeneous nucleation, and crystallization in the blade‐coating and N 2 ‐knife drying processes. In this work, a three‐step restraining strategy is introduced utilizing functional glycine amide hydrochloride to regulate pre‐nucleation clustering, suppress excessive heterogeneous nucleation, and decelerate crystallization, enabling comprehensive control of the perovskite film formation processes. This approach results in enlarged grains, reduced defect densities, and highly oriented crystalline wide‐bandgap perovskite films with significantly prolonged carrier lifetimes, achieving a maximum PCE of 19.97% for 1.77 eV‐bandgap blade‐coated PSCs. Furthermore, two‐terminal tandem cells, composed of wide‐bandgap perovskite top cells and 1.25 eV‐bandgap perovskite bottom cells fabricated via blade coating, yield an impressive PCE of 27.11% (stabilized at 26.87%). This study offers comprehensive insights into controlling pre‐nucleation, heterogeneous nucleation, and crystallization during blade coating, providing valuable guidance for developing high‐performance, large‐area devices in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助XTM采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
3秒前
3秒前
李健应助鲤鱼绣连采纳,获得10
3秒前
Lily发布了新的文献求助30
3秒前
4秒前
4秒前
鳄鱼队长发布了新的文献求助10
4秒前
李开心呀发布了新的文献求助10
4秒前
4秒前
4秒前
zenizeni发布了新的文献求助10
5秒前
不安涵山发布了新的文献求助20
5秒前
BJH0314发布了新的文献求助10
5秒前
所所应助陈楷采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
haha完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
jkljlj发布了新的文献求助10
7秒前
英姑应助谢谢李采纳,获得10
7秒前
C_Cppp完成签到 ,获得积分10
7秒前
科研通AI2S应助俭朴灵枫采纳,获得10
8秒前
9秒前
研友_ndv5j8发布了新的文献求助10
9秒前
一言应助神勇的板栗采纳,获得10
9秒前
超级日光发布了新的文献求助10
9秒前
10秒前
小代发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
粥粥发布了新的文献求助10
12秒前
熵增完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5792338
求助须知:如何正确求助?哪些是违规求助? 5740921
关于积分的说明 15482659
捐赠科研通 4919635
什么是DOI,文献DOI怎么找? 2648331
邀请新用户注册赠送积分活动 1595682
关于科研通互助平台的介绍 1550458