Joint Mixing Data Augmentation for Skeleton-based Action Recognition

计算机科学 接头(建筑物) 混合(物理) 动作(物理) 骨架(计算机编程) 人工智能 动作识别 计算机视觉 人机交互 结构工程 程序设计语言 班级(哲学) 物理 量子力学 工程类
作者
Linhua Xiang,Zengfu Wang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3700878
摘要

Skeleton-based action recognition is beneficial for understanding human behavior in videos, and thus has received much attention in recent years as an important research area in action recognition. Current research focuses on designing more advanced algorithms to better extract spatio-temporal information from skeleton data. However, due to the small amount of data in the existing skeleton dataset and the lack of effective data augmentation methods, it is easy to lead to overfitting in model training. To address this challenge, we propose a mix-based data augmentation method, Joint Mixing Data Augmentation (JMDA), which can generally improve the effectiveness and robustness of various skeleton-based action recognition algorithms. In terms of spatial information, we introduce SpatialMix (SM), a method that projects the original 3D skeleton discrete information into a 2D space. Then, SM mixes the projected spatial information between two random samples during the training process to achieve the spatial-based mixing data augmentation. Concerning temporal information, we propose TemporalMix (TM). Leveraging the temporal continuity in skeleton data, we perform a temporal resize operation on the original skeleton data, and then merge two random samples during training to achieve the temporal-based mixed data augmentation. Additionally, we analyze the Feature Mismatch (FM) problem caused by introducing mix-based data augmentation into skeleton data. Then we propose a new data preprocessing method called Feature Alignment (FA) to effectively address this problem and improve model performance. Moreover, we propose a novel training pipeline, Joint Training Strategy (JTS), which combines multiple mix-based data augmentation methods for further improvement of model performance. Specifically, our proposed JMDA is plug-and-play and widely applicable to skeleton-based action recognition models. At the same time, the application of JMDA does not increase the model parameters and there is almost no additional training cost. We conduct extensive experiments on NTU RGB+D 60 and NTU RGB+D 120 datasets to demonstrate the effectiveness and robustness of the proposed JMDA on several mainstream skeleton-based action recognition algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲书文完成签到,获得积分10
刚刚
7秒前
sujinyu完成签到,获得积分10
8秒前
8秒前
8秒前
12秒前
痴笑完成签到,获得积分20
12秒前
背背佳永远happy完成签到 ,获得积分10
13秒前
痴笑发布了新的文献求助50
15秒前
材料打工人完成签到 ,获得积分10
17秒前
闪闪青雪完成签到,获得积分10
22秒前
DONNYTIO完成签到,获得积分10
23秒前
Kelly1426完成签到,获得积分10
26秒前
lynn完成签到,获得积分10
27秒前
明亮的青旋完成签到 ,获得积分10
28秒前
Ken完成签到,获得积分10
29秒前
29秒前
linhuafeng完成签到 ,获得积分10
32秒前
稳重秋寒发布了新的文献求助10
35秒前
吉祥高趙完成签到 ,获得积分10
36秒前
高大的冰双完成签到,获得积分10
37秒前
菠萝包完成签到 ,获得积分10
39秒前
初色发布了新的文献求助10
39秒前
samuel完成签到,获得积分10
40秒前
40秒前
jie完成签到,获得积分20
43秒前
43秒前
李爱国应助沉默的幻枫采纳,获得10
45秒前
jie发布了新的文献求助10
45秒前
豆壳儿完成签到 ,获得积分10
53秒前
55秒前
啦啦鱼完成签到 ,获得积分10
55秒前
沉默的幻枫完成签到,获得积分10
56秒前
57秒前
吉米完成签到 ,获得积分10
59秒前
1分钟前
高高诗柳完成签到 ,获得积分10
1分钟前
重要无极完成签到,获得积分0
1分钟前
1分钟前
Mr.Left完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323285
关于积分的说明 10213393
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275