Predicting Individual Pain Sensitivity Using a Novel Cortical Biomarker Signature

磁刺激 生物标志物 慢性疼痛 医学 队列 物理疗法 物理医学与康复 心理学 内科学 刺激 生物化学 化学
作者
Nahian Chowdhury,Chuan Bi,Andrew J. Furman,Alan Chiang,Patrick Skippen,Emily Si,Samantha K. Millard,Sarah M. Margerison,Darrah Spies,Michael L. Keaser,Joyce T. Da Silva,Shuo Chen,Siobhan M. Schabrun,David A. Seminowicz
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:82 (3): 237-237 被引量:20
标识
DOI:10.1001/jamaneurol.2024.4857
摘要

Importance Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain. Objective To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME). Design, Setting, and Participants This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia. Participants were healthy adults aged 18 to 44 years with no history of chronic pain or a neurological or psychiatric condition. Participants experienced a model of prolonged temporomandibular pain with outcomes collected over 30 days. Electroencephalography to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on days 0, 2, and 5. Pain was assessed twice daily from days 1 through 30. Exposure Participants received an injection of nerve growth factor (NGF) to the right masseter muscle on days 0 and 2 to induce prolonged temporomandibular pain lasting up to 4 weeks. Main Outcomes and Measures The predictive accuracy of the PAF/CME biomarker signature was determined using a nested control-test scheme: machine learning models were run on a training set (n = 100), where PAF and CME were predictors and pain sensitivity was the outcome. The winning classifier was assessed on a test set (n = 50) comparing the predicted pain labels against the true labels. Results Among the final sample of 150 participants, 66 were female and 84 were male; the mean (SD) age was 25.1 (6.2) years. The winning classifier was logistic regression, with an outstanding area under the curve (AUC = 1.00). The locked model assessed on the test set had excellent performance (AUC = 0.88; 95% CI, 0.78-0.99). Results were reproduced across a range of methodological parameters. Moreover, inclusion of sex and pain catastrophizing as covariates did not improve model performance, suggesting the model including biomarkers only was more robust. PAF and CME biomarkers showed good to excellent test-retest reliability. Conclusions and Relevance This study provides evidence for a sensorimotor cortical biomarker signature for pain sensitivity. The combination of accuracy, reproducibility, and reliability suggests the PAF/CME biomarker signature has substantial potential for clinical translation, including predicting the transition from acute to chronic pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
SHENJINBING完成签到,获得积分10
6秒前
Isabel完成签到 ,获得积分10
7秒前
Fanbio完成签到 ,获得积分10
8秒前
XS_QI发布了新的文献求助10
10秒前
SHENJINBING发布了新的文献求助10
10秒前
神驹大将关注了科研通微信公众号
12秒前
屋巫奈奈完成签到,获得积分10
13秒前
zyj完成签到 ,获得积分10
14秒前
可爱的函函应助XS_QI采纳,获得10
18秒前
张若旸完成签到 ,获得积分10
19秒前
伯赏夏寒完成签到 ,获得积分10
21秒前
丘比特应助橙子采纳,获得10
23秒前
可乐完成签到,获得积分10
24秒前
tang完成签到 ,获得积分10
25秒前
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
蓝天应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
乐空思应助科研通管家采纳,获得10
28秒前
乐空思应助科研通管家采纳,获得50
28秒前
烟花应助科研通管家采纳,获得20
28秒前
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
李健应助科研通管家采纳,获得10
28秒前
28秒前
喜悦的板凳完成签到 ,获得积分0
29秒前
雨夜星空完成签到,获得积分10
29秒前
老北京完成签到,获得积分10
30秒前
上官若男应助积极问晴采纳,获得10
32秒前
34秒前
35秒前
科研通AI6.2应助czx采纳,获得10
36秒前
岚邑完成签到,获得积分10
37秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969