Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers

非索非那定 药效团 组胺 药理学 组胺受体 受体 对接(动物) 组胺H1受体 化学 计算生物学 医学 生物 立体化学 敌手 生物化学 护理部
作者
Zaid Anis Sherwani,Mohammad Nur‐e‐Alam,Aftab Ahmed,Zaheer Ul‐Haq
出处
期刊:Medicinal Chemistry [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/0115734064355393250121062539
摘要

Introduction: Histamine Type I Receptor Antagonists (H1 blockers) are widely used to mitigate histamine-induced inflammation, particularly in allergic reactions. Histamine, a biogenic amine found in endothelial cells, vascular smooth muscle, bronchial smooth muscle, and the hypothalamus, is a key player in these responses. H1 blockers are essential in cough syrups and flu medications and are divided into two generations: first-generation H1 blockers, which are sedating and have numerous side effects, and second-generation blockers, which are non-sedating and generally less toxic but may still exhibit cross-reactivity with other receptors. Method: In this study, a comprehensive database of compounds was utilized alongside fexofenadine as a benchmark to discover compounds with potentially superior efficacy and reduced side effect profiles. In particular, multidimensional K-means clustering, a machine-learning technique, was applied to identify compounds with chemical structures similar to fexofenadine. Result: Utilizing computational prediction of pharmacokinetic profile and molecular docking experiments, the action of these drugs on the H1 receptor was assessed. Furthermore, the crossreactivity of antihistamines was investigated by conducting a structure-based pharmacophore feature analysis of the docked poses of highly toxic antihistamines with various receptors. Conclusion: By identifying and proposing the removal of common toxic features, we aim to facilitate the development of antihistamines with fewer adverse effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助细心柚子采纳,获得10
刚刚
努力科研霸王龙完成签到 ,获得积分10
1秒前
angelsknight完成签到,获得积分10
1秒前
罪恶发布了新的文献求助10
1秒前
木木完成签到,获得积分10
1秒前
1秒前
SYT完成签到,获得积分10
2秒前
Agoni完成签到,获得积分10
3秒前
Xiaoming233完成签到,获得积分10
3秒前
lap完成签到,获得积分20
3秒前
文龙发布了新的文献求助10
3秒前
4秒前
李健应助duxixixi采纳,获得10
4秒前
方方发布了新的文献求助10
4秒前
科研通AI2S应助嘎嘎嘎采纳,获得10
5秒前
坚强的刺猬完成签到,获得积分10
5秒前
6秒前
SciGPT应助chenzhezhixp采纳,获得10
6秒前
6秒前
7秒前
铁柱完成签到,获得积分10
7秒前
7秒前
姿姿完成签到,获得积分10
7秒前
8秒前
对照完成签到 ,获得积分10
8秒前
9秒前
含蓄含烟完成签到,获得积分10
9秒前
方方完成签到,获得积分20
9秒前
10秒前
10秒前
绿兔子完成签到,获得积分10
10秒前
11秒前
pzc完成签到,获得积分10
11秒前
不达鸟发布了新的文献求助10
12秒前
可盐够发布了新的文献求助10
12秒前
陆安完成签到 ,获得积分10
12秒前
和谐乐儿完成签到 ,获得积分10
12秒前
12秒前
12秒前
书篆发布了新的文献求助10
13秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788836
求助须知:如何正确求助?哪些是违规求助? 3334022
关于积分的说明 10266605
捐赠科研通 3050176
什么是DOI,文献DOI怎么找? 1673928
邀请新用户注册赠送积分活动 802296
科研通“疑难数据库(出版商)”最低求助积分说明 760560