Multicenter study on predicting postoperative upper limb muscle strength improvement in cervical spinal cord injury patients using radiomics and deep learning

医学 无线电技术 脊髓损伤 物理医学与康复 多中心研究 脊髓 颈椎 物理疗法 外科 放射科 随机对照试验 精神科
作者
Fabin Lin,Kaifeng Wang,Meng-Fu Lai,Wu Yang,Chunmei Chen,Yongjiang Wang,Rui Wang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-024-72539-0
摘要

Cervical spinal cord injury is often catastrophic, frequently leading to irreversible impairment. MRI has become the gold standard for evaluating spinal cord injuries (SCI). Our study aimed to assess the accuracy of a radiomics approach, based on machine learning and utilizing conventional MRI, in predicting the prognosis of patients with SCI. In a retrospective analysis of 82 SCI patients from three hospitals, we categorized them into good (n = 49) and poor (n = 33) prognosis groups. Preoperative T2-weighted MRI images were segmented using 3D-Region of Interest (ROI) techniques, and both radiomic and deep transfer learning features were extracted. These features were normalized using Z-score and harmonized via ComBat. Feature selection was performed using a greedy algorithm and Least absolute shrinkage and selection operator (LASSO), and others, followed by the calculation of radiomics scores through linear regression. Machine learning was then used to identify the most predictive radiomic features. Model performance was evaluated by analyzing the area under the curve (AUC) and other indicators.Univariate analysis indicated that the demographic characteristics of cervical spinal cord injury were not statistically significant. In the test dataset, the random forest (RF) combined with radiomics and ResNet34 demonstrated better performance, with an accuracy of 0.800 and an AUC of 0.893.Using MRI, deep learning-based radiomics signals show promise in evaluating and predicting the postoperative prognosis of these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润泽完成签到,获得积分10
2秒前
滕黎云发布了新的文献求助10
4秒前
小胖爱学习完成签到,获得积分10
4秒前
6秒前
一北发布了新的文献求助10
11秒前
完美天蓝完成签到 ,获得积分10
11秒前
赘婿应助钠钾蹦采纳,获得10
14秒前
18秒前
小马甲应助优秀藏鸟采纳,获得30
19秒前
Dorisyoolee完成签到,获得积分10
21秒前
21秒前
豌豆完成签到 ,获得积分10
21秒前
单纯从露关注了科研通微信公众号
21秒前
Dorisyoolee发布了新的文献求助10
23秒前
帅气的马里奥完成签到 ,获得积分10
24秒前
wenhao完成签到,获得积分10
25秒前
钠钾蹦发布了新的文献求助10
26秒前
怕黑不惜完成签到,获得积分10
26秒前
Neonoes完成签到,获得积分10
27秒前
31秒前
Panjiao完成签到 ,获得积分10
32秒前
单纯从露发布了新的文献求助10
34秒前
咯噔完成签到,获得积分10
35秒前
36秒前
乐观的涵柳完成签到 ,获得积分10
37秒前
ipcy完成签到 ,获得积分10
38秒前
Misea发布了新的文献求助10
40秒前
wy.he应助科研通管家采纳,获得10
46秒前
zhongu应助科研通管家采纳,获得10
46秒前
wanci应助科研通管家采纳,获得10
46秒前
Lucas应助科研通管家采纳,获得10
46秒前
zhongu应助科研通管家采纳,获得10
46秒前
今后应助科研通管家采纳,获得10
46秒前
wy.he应助科研通管家采纳,获得10
46秒前
笨笨芯应助科研通管家采纳,获得10
46秒前
桐桐应助科研通管家采纳,获得10
47秒前
47秒前
斤斤完成签到,获得积分10
49秒前
50秒前
XiaoDai完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549