Machine Learning-Assisted, Dual-Channel CRISPR/Cas12a Biosensor-In-Microdroplet for Amplification-Free Nucleic Acid Detection for Food Authenticity Testing

清脆的 核酸 反式激活crRNA 生物传感器 纳米技术 计算生物学 DNA 生物系统 计算机科学 化学 生物 材料科学 基因组编辑 生物化学 基因
作者
Zhiying Zhao,Roumeng Wang,Xinqi Yang,Jingyu Jia,Qiang Zhang,Shengying Ye,Shuli Man,Long Ma
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (49): 33505-33519 被引量:36
标识
DOI:10.1021/acsnano.4c10823
摘要

The development of novel detection technology for meat species authenticity is imperative. Here, we developed a machine learning-supported, dual-channel biosensor-in-microdroplet platform for meat species authenticity detection named CC-drop (CRISPR/Cas12a digital single-molecule microdroplet biosensor). This strategy allowed us to quickly identify and analyze animal-derived components in foods. This biosensor was enabled by CRISPR/Cas12a-based fluorescence lighting-up detection, and the nucleic acid signals can be recognized by a Cas12a-crRNA binary complex to trigger the trans-cleavage of any by-stander reporter single-stranded (ss) DNA, in which nucleic acid signals can be converted and amplified to fluorescent readouts. The ultralocalized microdroplet reactor was constructed by reducing the reaction volume from up to picoliter to accommodate the aforementioned reaction to further enhance the sensitivity to even render an amplification-free nucleic acid detection. Moreover, we established a smartphone App coupled with a random forest machine learning model based on parameters such as area, fluorescent intensity, and counting number to ensure the accuracy of image recording and processing. The sample-to-result time was within 80 min. Importantly, the proposed biosensor was able to accurately detect the ND1 (pork-specific) and IL-2 (duck-specific) genes in deep processed meat-derived foods that usually had truncated DNA, and the results were more robust and practical than conventional real-time polymerase chain reaction after a side-by-side comparison. All in all, the proposed biosensor can be expected to be used for rapid food authenticity and other nucleic acid detections in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的铁身完成签到 ,获得积分10
1秒前
单小芫完成签到 ,获得积分10
3秒前
浮游应助简单采纳,获得10
4秒前
蓝意完成签到,获得积分0
7秒前
zhuosht完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
11秒前
Hao应助昭荃采纳,获得10
13秒前
14秒前
zw完成签到,获得积分10
16秒前
huanghe完成签到,获得积分10
20秒前
王世卉完成签到,获得积分10
25秒前
范ER完成签到 ,获得积分10
26秒前
青檬完成签到 ,获得积分10
28秒前
mf2002mf发布了新的文献求助10
31秒前
32秒前
韧迹完成签到 ,获得积分0
33秒前
cc完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
51秒前
燕晓啸完成签到 ,获得积分0
1分钟前
虞无声完成签到,获得积分20
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
陆上飞发布了新的文献求助10
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
furin001完成签到,获得积分10
1分钟前
孤傲的静脉完成签到 ,获得积分10
1分钟前
ccmxigua完成签到,获得积分10
1分钟前
1分钟前
稳重母鸡完成签到 ,获得积分10
1分钟前
CY完成签到,获得积分10
2分钟前
77完成签到,获得积分10
2分钟前
末末完成签到 ,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
2分钟前
Hindiii完成签到,获得积分10
2分钟前
YuLu完成签到 ,获得积分10
2分钟前
Alvienan完成签到,获得积分10
2分钟前
青水完成签到 ,获得积分10
3分钟前
isedu完成签到,获得积分0
3分钟前
龙猫爱看书完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534648
求助须知:如何正确求助?哪些是违规求助? 4622620
关于积分的说明 14582731
捐赠科研通 4562828
什么是DOI,文献DOI怎么找? 2500424
邀请新用户注册赠送积分活动 1479910
关于科研通互助平台的介绍 1451138