已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Foundation Model for Advancing Healthcare: Challenges, Opportunities and Future Directions

基础(证据) 医疗保健 计算机科学 工程类 政治学 法学
作者
Yuting He,Fuxiang Huang,Xinrui Jiang,Yuxiang Nie,Minghao Wang,Ji‐Guang Wang,Hao Chen
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-20 被引量:34
标识
DOI:10.1109/rbme.2024.3496744
摘要

Foundation model, trained on a diverse range of data and adaptable to a myriad of tasks, is advancing healthcare. It fosters the development of healthcare artificial intelligence (AI) models tailored to the intricacies of the medical field, bridging the gap between limited AI models and the varied nature of healthcare practices. The advancement of a healthcare foundation model (HFM) brings forth tremendous potential to augment intelligent healthcare services across a broad spectrum of scenarios. However, despite the imminent widespread deployment of HFMs, there is currently a lack of clear understanding regarding their operation in the healthcare field, their existing challenges, and their future trajectory. To answer these critical inquiries, we present a comprehensive and in-depth examination that delves into the landscape of HFMs. It begins with a comprehensive overview of HFMs, encompassing their methods, data, and applications, to provide a quick understanding of the current progress. Subsequently, it delves into a thorough exploration of the challenges associated with data, algorithms, and computing infrastructures in constructing and widely applying foundation models in healthcare. Furthermore, this survey identifies promising directions for future development in this field. We believe that this survey will enhance the community's understanding of the current progress of HFMs and serve as a valuable source of guidance for future advancements in this domain. For the latest HFM papers and related resources, please refer to our website.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn发布了新的文献求助10
1秒前
121发布了新的文献求助10
1秒前
3秒前
莫欣宇完成签到 ,获得积分10
5秒前
Evelyn完成签到 ,获得积分10
7秒前
动听衬衫完成签到 ,获得积分10
8秒前
古猫宁发布了新的文献求助30
9秒前
Lily完成签到,获得积分10
10秒前
淡然大米完成签到 ,获得积分10
11秒前
Lucas应助zhu采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
蓝胖子完成签到 ,获得积分10
15秒前
李健应助zhu采纳,获得10
16秒前
18秒前
bkagyin应助随风采纳,获得10
20秒前
leo0531完成签到 ,获得积分10
20秒前
22秒前
古猫宁发布了新的文献求助10
24秒前
sam发布了新的文献求助50
27秒前
iorpi完成签到,获得积分10
30秒前
紫薯球完成签到,获得积分10
32秒前
传统的幻梦完成签到,获得积分10
33秒前
33秒前
科研通AI2S应助坚果采纳,获得10
35秒前
虚幻雁荷发布了新的文献求助10
36秒前
会发光的碳完成签到,获得积分10
39秒前
小蛇玩完成签到,获得积分10
46秒前
meimei完成签到 ,获得积分0
47秒前
云溪完成签到 ,获得积分10
47秒前
sam完成签到,获得积分10
48秒前
NexusExplorer应助虚幻雁荷采纳,获得10
51秒前
vicky完成签到,获得积分20
53秒前
随风给随风的求助进行了留言
53秒前
ding应助聪慧鸭子采纳,获得10
59秒前
卿霜完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875385
求助须知:如何正确求助?哪些是违规求助? 6516066
关于积分的说明 15676950
捐赠科研通 4993314
什么是DOI,文献DOI怎么找? 2691433
邀请新用户注册赠送积分活动 1633718
关于科研通互助平台的介绍 1591362