HMTN: Hierarchical Multi-scale Transformer Network for 3D Shape Recognition

判别式 计算机科学 粒度 人工智能 变压器 模式识别(心理学) 特征提取 机器学习 量子力学 操作系统 物理 电压
作者
Yue Zhao,Weizhi Nie,Zan Gao,An-an Liu
标识
DOI:10.1145/3503161.3548140
摘要

As an important field of multimedia, 3D shape recognition has attracted much research attention in recent years. Various approaches have been proposed, within which the multiview-based methods show their promising performances. In general, an effective 3D shape recognition algorithm should take both the multiview local and global visual information into consideration, and explore the inherent properties of generated 3D descriptors to guarantee the performance of feature alignment in the common space. To tackle these issues, we propose a novel Hierarchical Multi-scale Transformer Network (HMTN) for the 3D shape recognition task. In HMTN, we propose a multi-level regional transformer (MLRT) module for shape descriptor generation. MLRT includes two branches that aim to extract the intra-view local characteristics by modeling region-wise dependencies and give the supervision of multiview global information under different granularities. Specifically, MLRT can comprehensively consider the relations of different regions and focus on the discriminative parts, which improves the effectiveness of the learned descriptors. Finally, we adopt the cross-granularity contrastive learning (CCL) mechanism for shape descriptor alignment in the common space. It can explore and utilize the cross-granularity semantic correlation to guide the descriptor extraction process while performing the instance alignment based on the category information. We evaluate the proposed network on several public benchmarks, and HMTN achieves competitive performance compared with the state-of-the-art (SOTA) methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Iris完成签到 ,获得积分10
5秒前
一凡完成签到 ,获得积分10
9秒前
望远山完成签到,获得积分10
10秒前
seven光年发布了新的文献求助10
10秒前
10秒前
邪王真眼完成签到 ,获得积分10
13秒前
123完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
19秒前
allover完成签到,获得积分10
19秒前
Uncanny发布了新的文献求助10
22秒前
23秒前
yyzh发布了新的文献求助10
23秒前
烂漫的毛巾关注了科研通微信公众号
26秒前
Mic应助冷静孤风采纳,获得10
27秒前
顺心含蕾完成签到,获得积分10
28秒前
Jani完成签到 ,获得积分10
29秒前
mm完成签到 ,获得积分10
33秒前
35秒前
yyzh完成签到,获得积分10
35秒前
40秒前
43秒前
43秒前
46秒前
FashionBoy应助汉堡小屁采纳,获得10
47秒前
负责母鸡发布了新的文献求助10
48秒前
48秒前
lizh187完成签到 ,获得积分10
49秒前
11发布了新的文献求助10
50秒前
科研通AI6.1应助清楚采纳,获得10
53秒前
随便取完成签到,获得积分10
54秒前
54秒前
炮仗发布了新的文献求助10
59秒前
FashionBoy应助负责母鸡采纳,获得10
1分钟前
1分钟前
小牛牛妈咪完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868022
求助须知:如何正确求助?哪些是违规求助? 6437147
关于积分的说明 15657551
捐赠科研通 4983349
什么是DOI,文献DOI怎么找? 2687459
邀请新用户注册赠送积分活动 1630126
关于科研通互助平台的介绍 1588186