Clustering-guided Prototypical Contrastive Learning for Bearing Fault Diagnosis Under Variable Working Conditions

聚类分析 变量(数学) 断层(地质) 方位(导航) 计算机科学 人工智能 模式识别(心理学) 机器学习 数学 地质学 地震学 数学分析
作者
Chen Zhang,H.P. Wang,Wenjie Mao,Yu Xie,Bin Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adcadc
摘要

Abstract Methods based on deep learning for intelligent fault diagnosis have shown good results in general diagnostic tasks. Nevertheless, these methods largely depend on the sufficient labeled data, limiting their application in the actual scenarios where the availability of labeled data is limited. Moreover, the distribution of testing data is inconsistent with that of training data because bearings operate in various working conditions, leading to the performance degradation of these approaches. To tackle these two entangled problems, we propose a novel unsupervised domain adaptation network, which presents clustering-guided prototypical contrastive learning for cross-domain fault diagnosis. More specifically, k-means clustering is first used to aggregate similar source samples and target samples separately, acquiring the centroid of each cluster and the cluster index of each sample. Then, we propose in-domain and cross-domain contrastive learning strategies based on clustering results to achieve class alignment and domain alignment across source domain and target domain. By applying in-domain contrastive learning, we make the intra-class distance smaller while making the inter-class distance larger within each domain, effectively reducing the number of samples on the class boundaries. By applying cross-domain contrastive learning, class-to-class semantic similarity across two different domains is considered, which not only retains class discriminability in each domain but aligns these two domains at both the class level and the domain level. Detailed experiments on three bearing datasets reveal that our method outperforms in fault diagnosis across diverse working conditions, achieving average accuracy improvements of 2.10%, 7.44%, and 1.17% on the JNU, HUST, and Ottawa datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CipherSage应助hivivian采纳,获得10
1秒前
nadeem完成签到 ,获得积分10
3秒前
3秒前
binz完成签到,获得积分10
3秒前
5秒前
6秒前
MoriZhang完成签到,获得积分10
7秒前
mojio应助真实的一鸣采纳,获得10
7秒前
九三完成签到 ,获得积分10
7秒前
无花果应助Knight采纳,获得10
8秒前
科研小破白菜完成签到,获得积分10
8秒前
成就夜柳发布了新的文献求助10
8秒前
123456787899完成签到,获得积分10
11秒前
科研通AI2S应助牙牙采纳,获得10
12秒前
HHXYY完成签到 ,获得积分10
12秒前
hivivian发布了新的文献求助10
13秒前
Unfair完成签到,获得积分10
14秒前
阳光的日记本完成签到,获得积分10
19秒前
牙牙完成签到,获得积分10
22秒前
荷荷巴发布了新的文献求助10
22秒前
23秒前
敏感指甲油关注了科研通微信公众号
27秒前
Orange应助成就夜柳采纳,获得200
27秒前
科研通AI5应助平常寒蕾采纳,获得50
27秒前
李健应助科研兄采纳,获得10
29秒前
霓虹我哄完成签到,获得积分10
29秒前
跑来跳去发布了新的文献求助10
30秒前
科研通AI5应助wwj_kyt采纳,获得10
31秒前
32秒前
斯文鸡完成签到,获得积分10
32秒前
yin完成签到 ,获得积分10
32秒前
34秒前
34秒前
35秒前
现代友桃发布了新的文献求助10
36秒前
CodeCraft应助默默的难破采纳,获得10
36秒前
彪壮的微笑完成签到 ,获得积分10
36秒前
斯文败类应助hello采纳,获得10
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214