已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clustering-guided Prototypical Contrastive Learning for Bearing Fault Diagnosis Under Variable Working Conditions

聚类分析 变量(数学) 断层(地质) 方位(导航) 计算机科学 人工智能 模式识别(心理学) 机器学习 数学 地质学 地震学 数学分析
作者
Chen Zhang,H.P. Wang,Wenjie Mao,Yu Xie,Bin Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adcadc
摘要

Abstract Methods based on deep learning for intelligent fault diagnosis have shown good results in general diagnostic tasks. Nevertheless, these methods largely depend on the sufficient labeled data, limiting their application in the actual scenarios where the availability of labeled data is limited. Moreover, the distribution of testing data is inconsistent with that of training data because bearings operate in various working conditions, leading to the performance degradation of these approaches. To tackle these two entangled problems, we propose a novel unsupervised domain adaptation network, which presents clustering-guided prototypical contrastive learning for cross-domain fault diagnosis. More specifically, k-means clustering is first used to aggregate similar source samples and target samples separately, acquiring the centroid of each cluster and the cluster index of each sample. Then, we propose in-domain and cross-domain contrastive learning strategies based on clustering results to achieve class alignment and domain alignment across source domain and target domain. By applying in-domain contrastive learning, we make the intra-class distance smaller while making the inter-class distance larger within each domain, effectively reducing the number of samples on the class boundaries. By applying cross-domain contrastive learning, class-to-class semantic similarity across two different domains is considered, which not only retains class discriminability in each domain but aligns these two domains at both the class level and the domain level. Detailed experiments on three bearing datasets reveal that our method outperforms in fault diagnosis across diverse working conditions, achieving average accuracy improvements of 2.10%, 7.44%, and 1.17% on the JNU, HUST, and Ottawa datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
跳跃火车发布了新的文献求助10
7秒前
潇洒的卿发布了新的文献求助10
8秒前
OaaO发布了新的文献求助10
9秒前
高大的老头完成签到,获得积分10
9秒前
tjnksy完成签到,获得积分10
9秒前
Blank完成签到 ,获得积分10
15秒前
16秒前
唐语芹完成签到,获得积分20
16秒前
lxz发布了新的文献求助10
16秒前
HuY发布了新的文献求助10
19秒前
zyp完成签到,获得积分20
19秒前
Linson完成签到,获得积分10
25秒前
里里完成签到 ,获得积分10
30秒前
wcy完成签到 ,获得积分10
32秒前
40秒前
111完成签到 ,获得积分10
42秒前
ldz发布了新的文献求助10
45秒前
45秒前
50秒前
51秒前
51秒前
51秒前
52秒前
爆米花应助科研通管家采纳,获得10
52秒前
Lucas应助科研通管家采纳,获得10
52秒前
bkagyin应助科研通管家采纳,获得30
52秒前
李健的小迷弟应助lancelot采纳,获得10
1分钟前
Aliya完成签到 ,获得积分10
1分钟前
秋2完成签到 ,获得积分10
1分钟前
传奇3应助jewelliang采纳,获得10
1分钟前
屈屈完成签到,获得积分10
1分钟前
lcx完成签到,获得积分20
1分钟前
OaaO完成签到 ,获得积分10
1分钟前
1分钟前
Jes完成签到 ,获得积分10
1分钟前
一杯茶具完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839512
求助须知:如何正确求助?哪些是违规求助? 6140855
关于积分的说明 15603706
捐赠科研通 4957382
什么是DOI,文献DOI怎么找? 2672246
邀请新用户注册赠送积分活动 1617304
关于科研通互助平台的介绍 1572300