Parameter Calibration Method of Johnson-Cook Constitutive Model based on Tensile and Compression Tests

校准 本构方程 压缩(物理) 极限抗拉强度 拉伸试验 计算机科学 材料科学 结构工程 复合材料 数学 工程类 有限元法 统计
作者
Deyu Kong,Yunkai Gao
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2025-01-8242
摘要

<div class="section abstract"><div class="htmlview paragraph">In new energy vehicles, aluminum alloy has gained prominence for its ability to achieve superior lightweight properties. During the automotive design phase, accurately predicting and simulating structural performance can effectively reduce costs and enhance efficiency. Nevertheless, the acquisition of accurate material parameters for precise predictive simulations presents a substantial challenge. The Johnson-Cook model is widely utilized in the automotive industry for impact and molding applications due to its simplicity and effectiveness. However, variations in material composition, processing techniques, and manufacturing methods of aluminum alloy can lead to differences in material properties. Additionally, components are constantly subjected to complex stress states during actual service. Conventional parameter calibration methods primarily rely on quasi-static and dynamic tensile tests, offering limited scope in addressing compression scenarios. This paper proposes an inversion calibration method tailored for 6082-T6 aluminum alloy, employing both tensile and compression tests to refine parameter estimation. The calibration process integrates results from both tensile and compressive stress states into the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) data set. The initial model parameters are derived from uniaxial tensile test results. Subsequently, uniaxial compression test results are used as target curves, with the optimal calibration parameters identified through the minimization of the standard deviation between these target curves and corresponding simulated curves. Finally, the accuracy of the method is verified by tensile tests, compression tests and drop hammer impact tests. Throughout the process of parameter calibration, a more suitable material model can be obtained by adjusting the content of target curves and the specific gravity between target curves.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2568269431完成签到 ,获得积分10
1秒前
LSQ47完成签到 ,获得积分10
2秒前
Bingo完成签到 ,获得积分10
3秒前
3秒前
4秒前
阳光的玉米完成签到,获得积分10
7秒前
7秒前
科研通AI6.1应助天真的青采纳,获得10
9秒前
JayL完成签到,获得积分10
10秒前
852应助lingzhi采纳,获得10
12秒前
18秒前
科研通AI2S应助我是笨蛋采纳,获得30
18秒前
小号发布了新的文献求助10
19秒前
TheSail完成签到,获得积分10
23秒前
lingzhi发布了新的文献求助10
23秒前
Akim应助Miranda采纳,获得10
24秒前
24秒前
25秒前
27秒前
bbbbbbbb5完成签到,获得积分10
28秒前
29秒前
Luo发布了新的文献求助10
29秒前
29秒前
归海浩阑完成签到,获得积分10
31秒前
给我点光环完成签到,获得积分10
32秒前
32秒前
科研通AI6.1应助zzznznnn采纳,获得50
33秒前
俞治丞发布了新的文献求助10
33秒前
彩色的天亦完成签到,获得积分10
35秒前
我是笨蛋发布了新的文献求助30
38秒前
Hello应助Luo采纳,获得10
38秒前
彦成完成签到,获得积分10
39秒前
科目三应助雇凶暗杀蛋饺采纳,获得10
42秒前
42秒前
ccob完成签到,获得积分10
44秒前
www完成签到,获得积分10
45秒前
48秒前
小池发布了新的文献求助10
48秒前
49秒前
CodeCraft应助doudou采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5836685
求助须知:如何正确求助?哪些是违规求助? 6115480
关于积分的说明 15595807
捐赠科研通 4954922
什么是DOI,文献DOI怎么找? 2670762
邀请新用户注册赠送积分活动 1616026
关于科研通互助平台的介绍 1571042