已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attacks and Defenses for Generative Diffusion Models: A Comprehensive Survey

计算机科学 生成语法 扩散 数据科学 生成模型 人工智能 物理 热力学
作者
Vu Tuan Truong,L. Dang,Long Bao Le
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
标识
DOI:10.1145/3721479
摘要

Diffusion models (DMs) have achieved state-of-the-art performance on various generative tasks such as image synthesis, text-to-image, and text-guided image-to-image generation. However, the more powerful the DMs, the more harmful they can potentially be. Recent studies have shown that DMs are prone to a wide range of attacks, including adversarial attacks, membership inference attacks, backdoor injection, and various multi-modal threats. Since numerous pre-trained DMs are published widely on the Internet, potential threats from these attacks are especially detrimental to the society, making DM-related security a topic worthy of investigation. Therefore, in this paper, we conduct a comprehensive survey on the security aspect of DMs, focusing on various attack and defense methods for DMs. First, we present crucial knowledge of DMs with five main types of DMs, including denoising diffusion probabilistic models, denoising diffusion implicit models, noise conditioned score networks, stochastic differential equations, and multi-modal conditional DMs. We provide a comprehensive survey of recent works investigating different types of attacks that exploit the vulnerabilities of DMs. Then, we thoroughly review potential countermeasures to mitigate each of the presented threats. Finally, we discuss open challenges of DM-related security and describe potential research directions for this topic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
打打应助DSH采纳,获得10
5秒前
所所应助十三月的过客采纳,获得10
7秒前
铁臂阿童木完成签到 ,获得积分10
7秒前
jackone完成签到,获得积分10
9秒前
LGA1700完成签到,获得积分10
9秒前
wangziminimin发布了新的文献求助10
9秒前
10秒前
李文哲应助南风采纳,获得100
12秒前
zhoududu发布了新的文献求助10
13秒前
寒梅恋雪完成签到 ,获得积分10
13秒前
14秒前
搞科研的小李同学完成签到 ,获得积分10
16秒前
17秒前
嘀嘀菇菇完成签到 ,获得积分10
20秒前
wangziminimin完成签到,获得积分10
20秒前
棉籽完成签到 ,获得积分10
20秒前
猪猪hero应助Youngman采纳,获得10
21秒前
wanci应助遇见馅儿饼采纳,获得10
21秒前
21秒前
科研通AI5应助zhoududu采纳,获得10
23秒前
23秒前
orixero应助酷酷的滕采纳,获得10
23秒前
25秒前
25秒前
Orange应助曦晨采纳,获得10
27秒前
科研通AI5应助Crazyjmj采纳,获得10
28秒前
lll发布了新的文献求助10
28秒前
十三月的过客完成签到,获得积分10
29秒前
xhm完成签到 ,获得积分10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
31秒前
木之尹发布了新的文献求助10
31秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830270
求助须知:如何正确求助?哪些是违规求助? 3372717
关于积分的说明 10474731
捐赠科研通 3092426
什么是DOI,文献DOI怎么找? 1702081
邀请新用户注册赠送积分活动 818785
科研通“疑难数据库(出版商)”最低求助积分说明 771080