人工智能
计算机科学
目标检测
模式识别(心理学)
突出
无监督学习
对象(语法)
图像分割
计算机视觉
自然语言处理
分割
作者
Huankang Guan,Jiaying Lin,Rynson W. H. Lau
标识
DOI:10.1109/tip.2025.3558674
摘要
Existing unsupervised salient object detection (USOD) methods usually rely on low-level saliency priors, such as center and background priors, to detect salient objects, resulting in insufficient high-level semantic understanding. These low-level priors can be fragile and lead to failure when the natural images do not satisfy the prior assumptions, e.g., these methods may fail to detect those off-center salient objects causing fragmented objects in the segmentation. To address these problems, we propose to eliminate the dependency on flimsy low-level priors, and extract high-level saliency from natural images through a contrastive learning framework. To this end, we propose a Contrastive Saliency Network (CSNet), which is a prior-free and label-free saliency detector, with two novel modules: i) a Contrastive Saliency Extraction (CSE) module to extract high-level saliency cues, by mimicking the human attention mechanism within an instance discriminative task through a contrastive learning framework, and ii) a Feature Re-Coordinate (FRC) module to recover spatial details, by calibrating high-level features with low-level features in an unsupervised fashion. In addition, we introduce a novel local appearance triplet (LAT) loss to assist the training process by encouraging similar saliency scores for regions with homogeneous appearances. Extensive experiments show that our approach is effective and outperforms state-of-the-art methods on popular SOD benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI